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In this paper, I criticize Bedau’s definition of ‘diachronically emergent properties’ 
(DEPs), which says that a property is a DEP if it can only be predicted by a 
simulation (simulation requirement) and is nominally emergent. I argue at length 
that this definition is not complete because it fails to  eliminate trivial cases. I 
discuss the features that an additional criterion should meet in order to  complete 
the definition and I develop a notion, salience, which together with the simulation 
requirement can be used to  characterize DEPs. In the second part of the paper, I 
sketch this notion. Basically, a property is salient when one can find an indicator, 
namely a descriptive function (DF), that is such that its fitting description shifts 
from one elementary mathematical object (EMO) to another when the property 
appears. Finally, I discuss restrictions that must be brought to  what can count as 
DFs and EMOs if the definition of salience is to  work and be non trivial. I conclude 
that salience (or a refined version of it) can complete the definition of DEPs. 

In the literature about emergent properties, attention has recently been 
paid to properties that emerge diachronically in complex systems, for ex- 
ample when a tornado ends up appearing in a usually quiet area. 

The central idea behind diachronic emergence is that these emergent 
properties can be explained or derived, at least in principle, from the system 
microdynamics (so they have nothing mysterious), but only in a complex 
way, e.g. for the apparition of the tornado by numerically solving Navier- 
Stokes equations. 

In the past decade, different definitions have been proposed to charac- 
terize more precisely diachronically emergent properties (DEPs) . Stephan’ 
emphasizes that DEPs are highly unpredictable, as demonstrated in the 
case of deterministic chaos. Bedau2 claims that a property is diachronically 
emergent (he uses the term ‘weakly emergent’) if it can be derived from the 
system’s microdynamics and external conditions but only by simulation. I 
label this latter condition the ‘simulation requirement’ (SR). 

In this paper, I focus on Bedau’s definition, which I am definitely sup- 
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portive of, and I try to refine it further by making it more stringent. I 
agree that the definition is sufficiently broad to be fruitfully applied to a 
large variety of systems that exhibit properties that seem to be DEPs. Yet, 
I argue that the SR is not enough to define DEPs and that the definition, 
as stated by Bedau, encompasses too many properties. I try in a second 
step to build a notion, namely salience, that is appropriate to complete the 
definition and capture only the right set of properties. 

1. Preliminaries 

In order to present the problem, I shall restrict for simplicity to an example 
belonging to discrete mathematics, namely the case of a one dimensional CA 
system composed of cells, each colored black or white.a A rule determines 
the color of each cell at  each step. Below is rule 110. It says for example 
that when a CA and its neighbours are black, the CA turns white at  the 
next step. 

Figure 1. Rule 110 

The evolution of such a CA system, composed of automata following 
rule 110, depends on its initial condition. Figures 2 and 3 represent this 
evolution when the initial condition is a single black cell. Each line repre- 
sents the system state at  a given step and the evolution is downwards. 

One can see on these figures that in this case, the evolution is neither 
highly regular nor completely random. We can witness the emergence of 
patterns such as occasional big triangles or as the vertical column of trian- 
gles in the right. 

For the discussion that follows, it is appropriate that I give pet names to 
the properties that the discussion is going to revolve upon. ‘Blackcell’ refers 
to the property ‘having CA 10 in a black state’ and it is true at time 20. 
‘Bigtriangle’ refers to the property ‘having a big triangle appearing around 
CA number 20 on the lattice’ and it is true around time 80. ‘Microstate50’ 

aFor a clear presentation of cellular automata, see for example [3]. 
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Figure 2. 
New Kind of Science, chap. 2, reproduced with permission of Stephen Wolfram, LLC. 

Rule 110, starting from a single black cell, 250 steps. Figure taken from A 

refers to the property ‘being in the configuration that the system is in at 
step 50’ and it is true at  time 50. ‘Verticalcolumn’ refers to the property 
‘having a vertical column of triangles appearing around CA 60’ and it is true 
around time 350. These are property names but for linguistic commodity, 
I shall also use these names to refer to the instantiation of these properties 
at  the mentioned times and also as if they designated emerging things. 

I also need to introduce scraps of terminology. I shall use ‘microprop- 
erty’ to refer to a property of a basic constituent. In our examples, the two 
basic microproperties of a CA are ‘being black’ or ‘being white’ and you 
can specify them by including time, e.g. ‘being black at  time 3’. Following 
the uses in statistical physics, I shall call ‘microstates’ conjunctive prop- 
erties that consist of the ordered enumeration of all the microproperties 
of the parts of the system S. I shall also call ‘macroproperties’ proper- 
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Figure 3. 
with permission of Stephen Wolfram, LLC. 

Rule 110,500 steps. Figure from A New Kind of Science, chap. 2, reproduced 

ties that can only be possessed by the whole system but not by its part. 
Such properties are sometimes referred to in the literature as ‘nominally 
emergent’.4 Structural properties, involving microproperties and a relation 
between them are a subspecies of nominally emergent proper tie^.^ Exam- 
ples of macroproperties are Blaekcell, Microstate50 or, for a cup of water, 
fluidity or transparency, because molecules of water cannot be said to be 
fluid or transparent. I will not venture here in giving a more detailed general 
definition of macroproperties because I shall not need that much to define 
DEPs. Bedau himself acknowledges that “full understanding of nominal 
emergence would require a general theory of when macro entities have a 
new kind of property that their constituents cannot have”.4 That should 
not worry us too much because in our CA system example, we can very 
easily, if we need to, depart on a purely logical ground what counts as a 
macroproperty from what does not. 
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2. Statement of the problem (Pb) 

I can now phrase precisely why I am not satisfied with Bedau’s definition 
of DEPs. The consequence of equating the fact of being a DEP with the 
fact of satisfying the simulation requirement (SR) is that 

(1) Blackcell, Microstate 50 and any coined conjunctive property that 
you feel like building up by the conjunction of microproperties, e.g. 
‘having CA 24 black at  time 3 and CA 47 white at time 567’- I 
call these “deceptive properties’; 

(2) respectable properties such as Verticalcolumn, Bigtriangle, or any 
emerging pattern - I call these “target properties”; 

must be treated on a par and considered as DEPs because we need to run 
a computer simulation to predict them all. 

I think this is an unpalatable consequence of the definition, which shows 
that the SR is not enough to define DEPs. 

2.1. Two ways to face (Pb) 

I shall now examine two ways to answer my claim that the SR is not suf- 
ficient to define DEPs and I shall show why I think these answers are 
unsatisfactory. 

2.1.1. Is nominal emergence enough to solve (Pb)? 

I have assumed in my phrasing of the problem that the SR is what matters 
in the definition of DEPs. Bedau may perhaps argue that I have not faith- 
fully reported his view, because he says: “Assume that P is a nominally 
emergent property possessed by some locally reducible system S. Then P is 
weakly emergent if and only if P is derivable from all of S’s micro facts but 
only by simulation”. So according to Bedau the SR applies only to nomi- 
nally emergent properties. Thus I can be reproached for having forgotten 
the condition about P being nominally emergent or else for having misused 
the notion: Blackcell (‘having CA 20 black’) seems to be a property of the 
whole system and so to be nominally emergent ... but isn’t it because I used 
a logical trick to forge Blackcell, instead of simply talking of a less intricate 
microproperty which applies to CA 20 at time 10, namely ‘being black’? 
Well, maybe. I leave to the reader’s metaphysical intuitions whether the 
property ‘having a big wart on her nose’ (which is true of the witch that 
gives the apple to Snow White) is not a very respectable property too and 
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is really the same as ‘being in a warty state’ (which, for a coarse-grained 
description of the witch, is true of the descriptive cell corresponding to the 
witch’s nose). In any case, the conclusion should at least be that if we want 
to be able to determine which properties are DEPs we really need much 
more theorizing about nominal emergence to select the right properties. 

But I strongly doubt that a good theory about nominal emergence will 
do. A reason is that, from a descriptive point of view, properties such as 
Bigtriangle or the appearance of a tornado in a fluid, which are paradigms 
for diachronical emergence, describe local features indeed,b and that these 
features do not necessarily involve the whole system for being predicated 
but can be predicated of just a few CAs, even if they are generated by the 
whole system evolution (just like Blackcell). So from the nominal emergence 
perspective, the difference between Blackcell and Bigtriangle is very slight, 
whereas my guess is that Blackcell is not a DEP in our example, whereas 
the appearance of a tornado is. 

Another problem is that properties which are pure conjunction of micro- 
properties and involve the whole system, such as Microstate50, will still be 
nominally emergent, however unremarkable they may be. It is still possible 
to hope that a strengthening of nominal emergence may make it possible 
to get rid of them too. Yet it seems to me that with this strategy, we are 
progressively lead towards a different kind of emergence leaning on a strong 
distinction between whole and parts. The solution I propose in the second 
part of this paper, with the use of the notion of salience, does not make use 
at  all of nominal emergence. 

2.1.2. Is there more to diachronical emergence than mere 
computational irreducibility? 

A second way to face (Pb) is to hold tight like this: “Yes indeed, the 
SR is what only matters to define DEPs and there is no reason to make 
further distinctions between properties, because as far as weak emergence 
is concerned, these properties are really on a par. If you want to predict the 
apparition of Blackcell or Microstate50, you have to run a simulation and let 
all these properties diachronically emerge. These properties are so to speak 
“as diachronically emergent as” Bigtriangle or Verticalcolumn because the 
same computational effort (modulo time linearity to account for different 
appearance times) is required to predict them all. This computational effort 

bSee also note g. 
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corresponds precisely to the running of the dynamics of the whole system 
- and this is where the notion of whole system has a part to play.” 

I do not think that Bedau would hold tight like this. In [2], the examples 
are about the emergence of periodic or stable configurations in the Game 
of Life and about adaptation of mutation rates in a model of evolving life. 
That is not exactly what one would call trivial or insignificant properties 
of a system, as Blackcell or Microstate50 can be assessed to be. So if the 
definition purports to include in its scope such insignificant properties, this 
should be made clear and the examples are misleading because they point 
at  a specific class of very remarkable DEPs. 

Besides, if there is nothing more to diachronic emergence than the SR, 
then it is maybe better not to talk of emergence at all and to speak merely 
of properties of computationally irreducible systems6 , or of properties that 
are for a system computationally irreducible: if one views the evolution of 
a system as a computation, then a system is computationally irreducible if 
given its initial state, there exists no shorter computation that enables to 
predict a later state of the system. In other words, there exists no shortcut 
to predict the properties of the system. 

Yet, I am quite reluctant to content with an equivalence between di- 
achronic emergence and computational irreducibility. Giving a clear defini- 
tion of computational irreducibility and finding that there are systems that 
are computationally irreducible, as in the case of low-dimensional chaos7, is 
one thing. Then, it could be a brute fact about nature that the properties 
that cannot be predicted except by a simulation are not really worthy of 
interest. Take for example a classical gas. Perhaps it is true that there is no 
way to predict exactly its future microstates (that is to say, to predict the 
position and velocity for each of the particles), except by a simulation. 
But who really cares? We can still use statistical physics to (try to) cal- 
culate more remarkable properties. So computational irreducibility would 
not be such a big issue, if it was just met in the case of such anonymous 
properties. 

But this is not the case. And a good incentive to talk about diachron- 
ically emergent properties is the two-piece fact (S) that, as abundantly 
illustrated by [6] and as can be seen in figure 3 with Bigtriangle or Verti- 
calcolumn: 

(Sl) there seems to be computationally irreducible systems and 
(S2) these systems generate among other things some properties (e.g. 

periodicity when Verticalcolumn appears) that can be as respectable, re- 
markable, new, worthy of interest or what you like as the properties we 
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ordinarily predict using analytical methods. 
My conclusion is that there is really something wanting in a definition 

of diachronic emergence that only relies on the SR. 
Various requirements can be found in the literature’, for emergent prop- 

erties, in particular novelty and irreducibility.c The SR requirement seems 
to fulfill the irreducibility requirement. So my claim is that, in the case of 
diachronic emergence, something like the novelty requirement must also be 
honored one way or another. 

2.2. How to complete the simulation requirement? 

It did not go unnoticed that I left (S2) quite vague and used so far unsat- 
isfactory adjectives (‘interesting’, ‘remarkable’, etc.). The purpose was to 
keep my different claims distinct so that one can agree with my diagnosis 
(the SR is not enough) and possibly disagree with the way I try to solve 
the problem (what is missing). 

What I want to do now is to give a criterion that enables to depart the 
computationally irreducible properties that seem to have nothing special 
(deceptive properties) from the ones that seem to have something more 
(Verticalcolumn, Bigtriangle). But before presenting my solution, I think 
it is appropriate to list the constraints that weigh on this criterion. 

2.2.1. T h e  criterion mus t  no t  rely o n  intrinsic features of the 
property but mus t  be contextual (Cl)  

As I stated above, properties that are produced by a computationally irre- 
ducible system can be the same as the ones we predict in other analytically 
solvable cases, e.g. periodicity of a configuration. Therefore one should 
not be after a criterion that would be based on a logical analysis of each 
property, or on a complexity measure or any other feature characterizing 
intrinsically the properties. To put it differently, what is striking is not to 
witness a complex, or ordered or random behavior in a CA system but, 
for example, to witness the apparition of a complex or random behavior 
emerging out of an initial simple output or, like in the example of CA 110, 
of structures emerging out of an almost uniform initial condition.d In other 

‘This is in no way is in a definition of or a necessary condition for emergent properties. 
In particularly, I do not assume that there is a single concept of emergence or that any 
concept of emergence must meet these requirements. 
dSee [6, pp.149-1521 for examples. 
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words, what matters is which new features the system dynamics is able to 
generate out of a context that did not possess these features, and that is 
why I say the criterion we look for is contextual. 

2.2.2. The criterion must be local, that is to say must rely on 
preceding microstates only (C2) 

Most of the listed properties (deceptive and target properties) are new in 
a very weak sense: they are properties that were not possessed before (the 
system was never in a state identical to Microstate50 before). Verticalcol- 
umn and Bigtriangle seem to be new in a stronger sense because the system 
seems to locally undergo a change. In the same time, nothing precludes that 
similar instances of target properties may have appeared before or may ap- 
pear again later: tornadoes do re-emerge in the same areas. I conclude that 
the desired criterion, if it is to characterize novelty, must be local in the 
sense that it is possible to determine if a property is novel only by looking 
at the microstates of the system just before the property appears. 

Local novelty is also an attractive feature because it is a weak require- 
ment in contrast with other kinds of novelty such as absolute novelty (if 
the supposedly new features were never possessed before). And I am after 
a weak criterion because I believe that the SR is what matters first in di- 
achronical emergence and I want only to refine it by disqualifying a very 
specific set of deceptive properties. 

The requirement of local novelty is also there to do credit to the idea 
that the apparition of an emergent property corresponds to an observable 
change in the system state. Emergent properties may involve no new causal 
power, as this is precisely the case with diachronic emergence, where all 
causal effects can be traced back to the system’s microdynamics. But one 
can still require that the emergence of these properties correspond to the 
apparition of novel features characterizing the system. 

2.2.3. The criterion must be contextually absolute (C3) 

Once a context - that is to say the previous microstates - is given, the 
novelty of a property must be assessed on the basis of objective properties. 
For example, there seems to be an objective sense in which one can say 
that a tornado is a new structure that locally appears, because one can 
find objective indicators to signal this appearance, such as a sudden local 
increase of average vorticity. In particular, although I call ‘salience’ the 
property that emergent properties must possess, I do not want salience to 
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be relative to an observer and her cognitive apparatus. 

3. Salience 

In the last section of this paper, I try to develop a concept, salience, that 
fulfills the previously listed requirements and I claim that DEPs must also 
be salient. Salience is an independent notion and I believe that it can prove 
to have a wider application than the question of emergence.e The definition 
of salience also raises its own set of problems, but since it is not my goal 
to fully develop this notion here, I shall be quite sketchy, leave aside most 
of these problems and be content to show how salience could be used to 
complete the definition of DEPs. 

The idea I am going to develop is that a property is salient if one can 
find a descriptive indicator which can be calculated for any state of the 
system and that undergoes a change when a salient property appears. To 
make things clearer, I start with two clear-cut examples. 

In the case of phase transitions, order parameters (when one manages 
to find one) yield such indicators. For example, in the case of the transition 
from ice to water, the quantity pice - psystem, where p indicates the density, 
is zero till the transition and then grows. 

Another more elaborate example from dynamical system field, which 
I borrow from Rueger', is the case of the damped non linear oscillator, 
which is described by van der Pol's equation: x - a(1- x2)x + x = 0, where 
x = d x / d t  and a is a damping parameter. For a dynamical system, it is 
appropriate to study properties of the phase space, which plays for us the 
role of a descriptive indicator. With a = 0, the oscillator is undamped 
and the phase space can be portrayed by concentric ellipses, each ellipse 
representing a trajectory (see figure 4). If the damping is gradually turned 
on, trajectories are no longer periodic and the phase space is made of spi- 
rales converging to a limit circle (see figure 5). So the turning off of the 
damping makes new salient properties appear (e.g. periodicity) and this 
can be indicated by the topological change of the phase space, which is de- 
scribed by topologically inequivalent objects (two objects are topologically 
inequivalent if one cannot smoothly deform one object to transform it into 
the other). 

This specific and very well chosen example enables Rueger to provide a 
very clear criterion of novelty, using the notion of topological inequivalence. 

eFor example for the question of what it is to identify a non trivial property in a data 
basis obtained by a number crunching simulation or by experiments. 
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Figure 4. Undamped oscillator, taken from Synthese, 124, 2004 

Figure 5. Damped oscillator, taken from Synthese, 124, 2004 

Yet it seems to me that he actually shows how novelty can be defined in a 
very particular case (dynamical system studies) and not in general. I am 
not sure my criterion of salience will be as clear and elegant, but it aims at 
being more general. 

3.1. Preliminary definitions 

I assume that at each time, the system can be suitably represented for the 
properties that are studied by data originating in n measurements and I call 
‘state of the system’ this n-tuple of measurements. Examples of states are 
a triplet (P,V,T) for a gas at equilibrium, data describing a velocity field 
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for a fluid, what I called ‘microstates’ for the above CA system or subparts 
of them (for example the subpart corresponding to CA number 15 to 25, 
that is to say where Bigtriangle does appear). 

I call ‘trajectory’ the sequence of states that one gets by varying a 
parameter describing the system. This parameter can be time, like in the 
case of the above CA system, but it need not always be. For example, 
temperature can be chosen for an ice to water phase transition. What is 
only required to get a well-defined trajectory along a parameter is that 
one single state can be ascribed to each new value of the parameter along 
the trajectory. Suppose for example you study properties of cooling of 
glasses. Since, for a similar initial condition, the end state of the glass and 
its properties depend on the cooling rate (see figure 6)’ actual trajectories 
depend on the cooling rate. Therefore temperature cannot be taken as the 
varying parameter defining trajectories. Specifying exactly the trajectory 
does matter because salience is a contextual notion (Cl) and because the 
part of the trajectory before a property appear provides the context against 
which the property stands out. 

I call ‘descriptive function’ a single-valued mathematical function that 
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Figure 6. Glass cooling modelled by a two well system (the fraction of the systems in the 
higher well is plotted). Figure taken from Dynamics of Complez systems,by Bar-Yam, 
reproduced with permission of Addison-Wesley. 
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takes as an argument the n-tuple describing the system.f 
This is in a no way a definition of a new object. This definition only 

provides a label that is stamped on already existing functions. Here are 
examples of descriptive function: 

for a spin lattice, the total magnetization or typical size of clusters 

0 an estimation, using an auto-correlation function, of the correlation 

0 the probability value of an event, for example of having two similar 

0 a complexity measure such as Kolmogorov complexity of a state; 
0 etc. 

of similarly oriented spins; 

between measurements at spatial or temporal distance r or t ;  

colors following each other on the above CA system; 

Descriptive functions are aimed at giving a common indicator all along 
the trajectory, so that it be possible to make comparisons and thus deter- 
mine if the system exhibits a new behavior. In the case of Verticalcolumn, 
we can for example study the spatial correlations around CA number 60 
in the 100 steps before Verticalcolumn is instantiated. On this interval, 
which plays the role of a context, the system undergoes fluctuations and 
correlations are low. When Verticalcolumn appears, fluctuations stop and 
the correlations suddenly get high. 

To be more precise descriptive functions should themselves be described 
by other more elementary mathematical object (EMO) which enable to fit 
them locally. In the case of the oscillator, the phase space was described 
by different geometrical figures (circles and spirales). The novelty is then 
signaled by the shift in the description of the descriptive function from one 
EM0 to another one. In the case of single-valued functions, EMOs are ele- 
mentary functions such as z2 and power laws, log(z ) ,  e z p ( z ) ,  trigonometric 
functions, etc. 

3.2. Towards a definition of salience 

I can try now to propose a first definition of salience. 

A property P of a system S, which appears at t or on interval I is 

fThis is actually a restriction that I make for simplicity because one may need more com- 
plicate objects than singlevalued function to describe suitably the systems. In Rueger’s 
example of the oscillator, the system was described for each value of the damping pa- 
rameter by trajectories within a phase space, 
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salient for trajectory T of S iff there exists different EMOs A and B and a 
descriptive function DF of the states of S’s trajectory such that: 

0 DF is described by A on an interval C of T (the context) before t 

0 the description of DF shifts from A to B at t or on I with the 
or I; 

apparition of property P. 

This definition, because of the existence condition, does not provide an 
algorithm to determine if a property is salient. So the burden of the proof 
is for those who want to claim that a given property is salient, because they 
need to find an appropriate indicator, which can be far from obvious, even 
for phase transitions. Further, this definition, stated like this, can easily 
be found wanting. For example, it would be necessary to have a way to 
determine what the minimal size of the context needs to be in each case. 
In the following paragraphs, I shall study a few obvious corrections that 
should be brought to the definition in order to make it work better and also 
indicate in which directions some work needs to be done if a definition of 
this kind is to be given a chance to be well-grounded in the end. 

3.3. How to avoid ad hoc descriptive functions? 

Remember salience aims at  eliminating undesirable properties such as Mi- 
crostate50 or Blackcell. An immediate objection is that it is very easy 
to find descriptive functions that will exhibit a change in behavior when 
Microstate50 or Blackcell appear. ‘Blackcell’ refers to the property of hav- 
ing CA 10 in a black state at time 20. If I take the color of CA 10 as 
a 1-tuple state, and if ‘black’ is encoded by 1 and ‘white’ by 0, and if 
CA(t,x) denotes the state of CA number x at time t ,  then the function 
t H b(t - 20).6(1 - C A ( t ,  lo)), where 6 denotes Dirac function, does ex- 
hibit a a sudden change in behavior when Blackcell appears. A similar trick 
can give the same result for Microstate50. That is why it is necessary to 
require that descriptive functions do not include functions of the parameter 
defining the trajectory (such as t H 6( t  - 20)) that have an ad hoc salient 
feature, which is made to appear at t or I (see definition above). Further, 
similar variables of the n-tuple should be treated similarly or contribute 
formally in a similar form to the descriptive function in order to avoid ad 
hoc treatments. The consequence is that most descriptive functions, like 
in the above examples, will be sums or integral functions. 

A cautionary remark needs to be made here. Such restrictions are not 



113 

aimed at getting rid of properties like Blackcell or Microstate50 in any 
circumstances. Suppose that CA 10 -happens to be white from step 0 to 19 
and then turns black at step 20. Then it is legitimate to say that Blackcell 
is salient and for that we no longer need an ad hoc function as above. 
Function CA (t,10), which is tolerated by the definition, will nicely do the 
job because it will have a zero value till step 19 and then will abruptly take 
value 1 at step 20.g Similarly, if it happens that Microstate50 is random 
and appears after a succession of non-random states, then this provides a 
good ground to call it ‘salient’. 

3.4. Requirements about describing EMOs 

Notice first that I do not define in the abstract what can count as EMOs. 
What EMOs are will depend in each case of what kind of mathematical 
object the descriptive function is. For example, EMOs will be different if 
you want to study the evolution of a phase space or of an order parameter. 

A fully assumed consequence of my definition is that a curve can have 
different salient parts even if you can fit it with one single curve. Take for 
example a curve that you can fit with function x H x2 + 0 . 1 ~ ~ .  With my 
definition, it can be said to have different salient parts. Around x = 0, the 
curve is correctly described by x2. For large x, it is best described by 0.1x3. 

A more worrisome problem is this. Take a curve F that always has 0 
value. Then you can very easily find two polynomials A and B such that 
1) A has value 0 till x=l  and then has a more complicated behavior 2) B 
has value 0 after x = 1 and a complicated behavior before.h A and B are 
2 EMOs and the description of F shifts from one to the other. So it seems 
that it is possible to find salience really everywhere. To guard against that, 
it is necessary to require that there is no EM0 that fits F on both intervals 
where A and B are supposed to fit it and that is in the same time simpler 
than A and B. Here, the function x H 0 is simpler than A and B. 

The outcome of this is that, in order to fully develop the notion of 
salience, I need to be able to estimate the simplicity of mathematical ob- 
jects. In the previous example, one must be able to explain why x2 + 0.1x3 

gNote that in this case, nominal emergence would disqualify Blackcell. 
hIn short, I need to set restrictions on which EMOs can be used to fit the curves. It 
probably did not go unnoticed to the reader that the discussion of salience turns out to 
be reminiscent of discussions about induction, curve-fitting and projectibility, and here 
in particular of Goodman’s paradox about grue emeralds (see [9, chap. 3-41 and [lo, 
chap. 51. A complete definition of salience should show how to avoid the goodmanian 
pitfalls or how to get out of them. 
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is less simple than x2 or 0.1z3. Since the last two expressions are composed 
of one element and the former of these two elements, the answer may seem 
obvious. But this seems all too relative to the mathematical framework that 
is taken as basic. Taking as basic the functions z H g(z) = z2 + 0.1z3 
and z H h(z)  = z2 - 0.1z3, one gets z2 = 0.5(g(z) + h(z) )  and z2 seems 
now less simple than g(z). As a reviewer points out, this makes salience 
relative to a privileged descriptive mathematical framework. A way out 
of the deadlock would perhaps be to argue that there are good objective 
grounds, in each case of data mining and salient properties detection, to 
privilege a descriptive mathematical framework and basic EMOs on the ba- 
sis of which projectable quantities characterizing the system the descriptive 
function and more generally the mathematical description represent. 

I do not go any further in the discussion of the concept of salience, since 
as just shown, this would require a close scrutiny of much debated ques- 
tions, like simplicity and curve fitting. One more thing still. In this paper, 
the concept of salience was only aimed at giving a way to single out the 
properties that are considered as remarkable in the study of a system, e.g. 
in physics. But determining what patterns or properties are salient for a 
subject is also a question that is crucial in cognitive sciences.' I make no 
claim in this paper about the link between the two notions, which may be 
somewhat related, even if not identical. This latter point can be illustrated 
as follows. Indeed, a salient property (as defined above) in a data basis can 
be imperceptible for a subject. That is why data mining requires resort to 
statistical tests made by computers. In the same time, perceptual abilities 
for pattern recognition also prove very useful to detect interesting prop  
erties, for example in hydrodynamic simulations, and the existence of the 
supposedly detected properties can be checked afterwards with statistical 
indicators. Finally, a system (e.g. a Hopfield network3) could be trained to 
detect in any circumstances a given pattern of CAs whereas this pattern 
need not always be salient (in my sense), since the notion is contextual. 
Besides, the pattern detection system may treat differently inputs of the 
same kind ( i e  corresponding to similar variables of the n-tuple in the 
mathematical description) and thereby use for detection a function that 
would not qualify as a descriptive function. 

'See Ill] for example. 
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4. Conclusion 

We can now check that the concept of salience meets the requirements 
listed above, or that a well-grounded and refined version of it could be 
hoped to. It is local, because it depends only on the preceding part of the 
trajectory. It is contextual because any property can happen to  be salient 
if it is generated by a context against which some of its features stand out. 
It is objective (at least provided a descriptive mathematical framework is 
given) because it relies on the construction of mathematical indicators and 
not on our epistemic interests, perceptual abilities or practical goals: for 
example, the position at a given time of a planet, on which one wants to  
send a shuttle, is very unlikely to  be salient. 

Salience, as I built it, is a very weak and purely descriptive notion, 
which aims at  grasping the idea that the apparition of a non-trivial prop- 
erty is simultaneous with a significant change in some of the values of the 
observable quantities characterizing the system. Once again, I think that 
using a concept as weak as possible to  complete the definition of DEPs is 
appropriate because I believe that the SR is the crucial element in it. But 
my conclusion is that DEPs satisfy the SR and are salient. 
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