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34. Computer Simulations and Computational Models
in Science

Cyrille Imbert

Computational science and computer simulations
have significantly changed the face of science in
recent times, even though attempts to extend our
computational capacities are by no means new
and computer simulations are more or less ac-
cepted across scientific fields as legitimate ways
of reaching results (Sect. 34.1). Also, a great variety
of computational models and computer simu-
lations can be met across science, in terms of
the types of computers, computations, compu-
tational models, or physical models involved and
they can be used for various types of inquiries
and in different scientific contexts (Sect. 34.2).
For this reason, epistemological analyses of com-
puter simulations are contextual for a great part.
Still, computer simulations raise general ques-
tions regarding how their results are justified, how
computational models are selected, which type of
knowledge is thereby produced (Sect. 34.3), or
how computational accounts of phenomena partly
challenge traditional expectations regarding the
explanation and understanding of natural sys-
tems (Sect. 34.4). Computer simulations also share
various epistemological features with experiments
and thought experiments; hence, the need for
transversal analyses of these activities (Sect. 34.5).
Finally, providing a satisfactory and fruitful defini-
tion of computer simulations turns out to be more
difficult than expected, partly because this notion
is at the crossroads of difficult questions like the
nature of representation and computation or the
success of scientific inquiries (Sect. 34.6). Over-
all, a pointed analysis of computer simulations
in parallel requires developing insights about the
evolving place of human capacities and humans
within (computational) science (Sect. 34.7).
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For several decades, much of science has been com-
putational, that is, scientific activity where computers
play a central and essential role. Still, computational
science is larger than the set of activities resorting to
computer simulations. For example, experimental sci-
ence, from vast experiments in nuclear physics at the
European Organization for Nuclear Research (CERN)
to computational genomics, relies heavily on comput-
ers and computational models for data acquisition and
their treatment, but does not seem to involve computer
simulations proper. In any case, there is a great and
still proliferating variety of types of computer simu-
lations, which are used for different types of inquiries
and in different types of theoretical contexts. For this
reason, one should be careful when describing the phi-
losophy of computer simulations and nonjustified gen-
eralizations should be avoided. At the same time, how
much the development of computer simulations has
been changing science is a legitimate question. Com-

puter simulations raise questions about the traditional
conceptualization of science in terms of experiments,
theories and models, about the ways that usual scien-
tific activities like predicting, theorizing, controlling, or
explaining are carried out with the help of these new
tools and, more generally, how the production of sci-
entific knowledge by human creatures is modified by
computer simulations. Importantly, while the specific
philosophical analysis of computer simulations is re-
cent (even if it was preceded by the development of the
philosophical study of scientific models) and compu-
tational science is a few decades old, the development
of computational tools and mathematical techniques
aimed at bypassing the complexity of problems be-
longs to a much older tradition. This means that claims
about how much computer simulations change science,
and how much a closer attention to computer simula-
tions should change our picture of scientific activity, are
questions to be treated with circumspection.

34.1 Computer Simulations in Perspective

When discussing philosophical and epistemological is-
sues related to computational models and computer
simulations, different chronologies should be kept in
mind. The blossoming of the philosophy of mod-
els and simulations, within the philosophy of science
is something recent (Sect. 34.1.1). The development
of techniques aimed at extending our inferential and
computational powers corresponds to a longer trend,
even if the recent invention of powerful digital ma-
chines has changed the face of computational science
(Sect. 34.1.2). Finally, the acceptation of computer
simulations as legitimate scientific tools across the dif-
ferent fields goes at various paces (Sect. 34.1.3). This
means that, even if computer simulations do change
the face of science, much care is needed when analyz-
ing the aspects of science which are actually changed,
and how we should modify our picture of science
when we adopt a computer simulation-based perspec-
tive (Sect. 34.1.4).

34.1.1 The Recent Philosophy
of Scientific Models
and Computer Simulations

While the use of computer simulations in the empiri-
cal sciences, in particular physics, developed after the
construction of the (ENIAC) computer during World
War II [34.1], and started changing how the empir-
ical sciences were practiced, for decades computer-
related discussions among philosophers were primarily
focused on the development of artificial intelligence
and the analysis of human cognition. Particularly ac-
tive were debates in philosophy of mind regarding
the question of the computational theory of the mind,
that is, whether the mind can be likened to a digital
computer, and in particular to a classical machine em-
ploying rules and symbolic representations [34.2–6].
However, within the mainstream philosophy of science,
continued interest for computational science, compu-
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tational models, and digital simulations of empirical
systems as such did not really start until the early 1990s,
with articles by Humphreys [34.7, 8], Rohrlich [34.9] or
Hartmann [34.10]. (Such a description of the field is
necessarily unfair to earlier works about the use of com-
puter simulations in the empirical sciences. Particular
mention should be given to the works of Bunge [34.11]
or Simon [34.12].) An article by Hughes about the
investigations of the Ising model [34.13], a special is-
sue of Science in Context edited by Sismondo [34.14]
and works by Winsberg [34.15–17], who completed
his Ph. D. in 1999 about computer simulations, also
contributed to the development of this field. Finally,
in 2006, the Models and Simulations Conference took
place, which was the first of what was to become a still
active conference series, which has contributed to mak-
ing the issue of computational science one of the fields
of philosophy of science.

Philosophical works about scientific models, a very
close field, were not significantly older. The impor-
tance of the notion of set-theoretic model had been
emphasized by partisans of the model-theoretic view
of theories in the 1970s, but, if one puts aside works
by pioneers like Black [34.18] or Hesse [34.19], this
did not launch investigations about scientific models
proper. Overall, the intense epistemological study of
models did not start until the 1980s, with in particular
a seminal article by Redhead about scientific models
in physics [34.20]. Members of the Stanford School
also argued against the view that science was unified
and that theories played a dominant role in scien-
tific activities such as the selection and construction
of models [34.21], and conversely emphasized the au-
tonomy of experimental and modeling practices. This
context was appropriate for an independent investiga-
tion about the role of models in science, which bloomed
at the end of the 1990s [34.22] and was further fed
by a renewal of interest for the question of scien-
tific representation [34.23–25]. These investigations of
models paved the way for new studies focused neither
on theories nor on experiments. However, while the dif-
ficulty to explore a model was already acknowledged
in works by Redhead and Cartwright, interest for the
actual modes of its exploration, in particular by com-
puter simulations, was not triggered. Indeed, the focus
remained on the effects of the complexity of the in-
quiry on scientific representations, with studies about
simplifications, approximations, or idealizations (Even
Laymon’s 1990 paper [34.26], in spite on its apparent
focus on computer simulation, mainly deals with the
nature of approximation and what it is to accept or be-
lieve a theory.), or how to articulate the model-theoretic
view of theories and the uses of models and repre-
sentations in actual scientific practices, by taking into

account scientific users, qua intentional cognitive crea-
tures [34.27, 28], and their cognitively constrained ways
to handle models by means of inferences, graphs, pic-
tures or diagrams (Kulvicki [34.29], Giardino Chap. 22,
this volume; Bechtel Chap. 27, this volume). Overall,
in spite of the close connection within scientific prac-
tice between the uses of models and their computational
explorations, the issue of computational models and
computer simulations was not seen clearly as a fruit-
ful field of inquiry of its own, this trend of thought
being explicitly and vividly brought to the fore in
2008 in a deliberately provocative paper by Frigg and
Reiss [34.30].

34.1.2 Numerical Methods
and Computational Science:
An Old Tradition

The second relevant chronology is that of the ad-
vancement in attempts to solve complex mathemati-
cal problems by developing computing machines and
mathematical methods. Importantly, while the develop-
ment of digital computers in the mid-twentieth century
changed the face of scientific computation, humans
did not wait for this decisive breakthrough to extend
their mathematical and computational powers. Further,
as Mahoney wrote it, “the computer is not one thing,
but many different things, and the same holds true of
computing” [34.31], and it is only in the twentieth cen-
tury that different historical strands related to logic,
mathematics, or technologies came together. On the
one hand, early mathematical procedures, like New-
ton’s method to find the roots of real-valued functions,
or Euler’s method to solve ordinary differential equa-
tions, were developed to provide numerical approxi-
mations for problems in numerical analysis. This field
was already important to investigate physical systems
but, with the advent of digital computers, it became
a crucial part of (computational) science. On the other
hand, mechanical calculating tools, such as abacuses
or slide rules, were used from the Antiquity through
the centuries. The invention by Pascal of a device
(the Pascaline) to perform additions and subtractions,
and the conceptualization by Babbage of mechanical
computing systems fed by punched cards, were im-
portant additional steps. Human computers were also
used. For example, in 1758, Clairaut predicted the re-
turn of Halley’s comet, by dividing the computational
work with other colleagues [34.32]. Gaspard de Prony
produced the logarithm and trigonometric tables in
the early nineteenth century by dividing the compu-
tational tasks into elementary operations, which were
carried out by unemployed hairdressers with little ed-
ucation. Human computers were used during World
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War I to compute artillery tables and World War II
to help with the Manhattan project [34.33, 34]. Fi-
nally, mechanical analog computers were developed
for scientific purposes by engineers and scientists like
Thomson or Kelvin, in the late nineteenth century,
Vannevar Bush, between the two World Wars, or En-
rico Fermi, in 1947, and such computers were used
till the 1960s. Finally, even in the digital era, new
technological change can have a large impact. For
decades, access to computational resources was diffi-
cult and only possible in the framework of big projects.
Typically, Schelling’s first simulations of residential
segregation [34.35] were hand made. An important
recent step has been the development of personal com-
puters, which has brought more flexibility and may
have triggered the development of new modeling prac-
tices [34.36].

34.1.3 A More or Less Recent Adoption
Across Scientific Fields

The development of computational science and the use
of computational models and simulation methods vary
from one field to another. Since the 1940s onward,
computer simulations have been used in physics, and
computers were also used in artificial intelligence as
early as the late 1950s. However, some fields have re-
sisted such methods, and still do, as far as commonly
accepted mainstreammethods are concerned. Typically,
the development of computational models and com-
puter simulations in the human and social sciences,
with the possibility of analyzing diachronic interac-
tions between agents (versus static models describing
equilibria) is much more recent. As emphasized ear-
lier, Schelling’s initial dynamic model of segregation
was first run manually in 1969. Attempts to use com-
putational science to predict social and economic be-
havior were globally met with suspicion in the 1960s
and 1970s, all the more since these studies were of-
ten carried out by scholars who did not belong to
well-entrenched traditions in these fields (such as sci-
entists studying complexity, including human behavior,
in institutions like the Santa Fe Institute). Overall,
in economics, computer simulations are still not ac-
cepted [34.37]. Similarly, the development of a specific
(and still somewhat distinct) subfield using computa-
tional methods to analyze social phenomena is recent,
with the edition by Hegselmann et al. of the volume
Modelling and Simulation in the Social Sciences from
the Philosophy of Science Point of View [34.38], the
need felt to create, in 1998, the Journal of Artificial
Societies and Social Simulation and the publication in
2005 of the handbook Simulation for the Social Scien-
tist by Gilbert and Troitzsch [34.39].

34.1.4 Methodological Caveat

These different chronological perspectives call for the
following comments.

First, philosophers should be careful when devel-
oping an epistemology of computational models and
computer simulations. Modeling and simulating prac-
tices have been developed in various epistemic contexts
in scientific fields in which well-entrenched theories
are more or less present and which have different
methodological and scientific norms. Thus, the role of
computer simulations and their epistemological assess-
ment can significantly differ from one case to another,
and bold generalizations should be carefully justified or
avoided. As just mentioned, the use of computer sim-
ulations is central and accepted in fields like climate
science (even if it raises important problems) but is
still regarded with great suspicion in fields like eco-
nomics [34.37, 40].

Second, how much computational models and com-
puter simulations correspond to epistemologically dif-
ferent practices, which should be described in terms
of some computational turn, cannot be assumed, but
should be investigated on a case-by-case basis regarding
all potentially relevant aspects. This can be illustrated
with the question of the tractability of scientific mod-
els. Humphreys, in his 2004 book Extending Ourselves,
proposes the following two principles to analyze sci-
ence: “It is the invention and deployment of tractable
mathematics that drives much progress in the physi-
cal sciences”; and its converse version: “most scien-
tific models are specifically tailored to fit, and hence
are constrained by, the available mathematics” [34.41,
pp. 55–56]. These two principles suggest both a con-
tinuist and discontinuist reading of the development
of science. First, students of science need to assess
which precise aspects of scientific practices have been
changed by the development of computers and whether
these changes should be seen as a scientific revolution,
or simply as an extension of existing modes of rea-
soning [34.42]. In this perspective, questions about the
tractability and complexity of models can no longer be
ignored, and may be crucial to an understanding of how
new branches of modeling and computational practices
can develop and of how the dynamics of science can
be qualitatively different [34.43]. At the same time, sci-
entific practices were also constrained by the available
mathematics before the advent of computers, and new
findings in mathematics already paved the way for the
development of new scientific practices. For example,
Lakatos emphasizes that [34.44, p. 137]

“the greatness of the Newtonian programme comes
partly from the development – by Newtonians of
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classical infinitesimal analysis which was a crucial
precondition for its success.”

From this point of view, a continuist reading is also
required.

Third, the computational perspective may require
partly revising the philosophical treatment of questions
about science, and scientific representation in particular.
Computer simulations are actual activities of investi-
gation of scientific models, and, for this reason, the
tractability and computational constraints that they face
can hardly be ignored when analyzing them. They force
us to adopt an in practice perspective, where what mat-
ters is not the logical content of representations (that
is, the information which agents can access in prin-
ciple, with unlimited resources), but the results and
conclusions which agents can in practice reach with the
inferential resources they have [34.41, §5.5]. By con-
trasts, traditional analyses of scientific models adopt an
in-principle stance: the question of their exploration and
of the tractability of the methods used to explore them
is one question among others, and is implicitly ideal-
ized away when discussing other issues. This implies
surreptitiously smuggling in the unjustified claim that
the distinction between what is possible in principle and
what is possible in practice can be ignored for the inves-
tigation of these other issues, which may sometimes be
controversial.

At the same time, philosophers of science draw
their examples from the scientific literature, which, by

definition, presents successful investigations of models
which must have been found to be, one way or an-
other, tractable enough regarding the inquiries pursued.
In brief, discussions about the scientific models which
are found in scientific practices are ipso facto concern-
ing computationally tractable models, or models having
computationally tractable versions.

How much these remarks imply that existing anal-
yses about scientific models have been discretely
skewed, or on the contrary that the constraints of
tractability have already been taken into account, needs
to be ascertained, and the answer may be different de-
pending on the question investigated. For example, for
decades the question of the relations between fields has
mainly been treated in terms of relations between theo-
ries. While this perspective is in part legitimate, recent
investigations suggest that tractable models may also be
a relevant unit to analyze scientific theoretical, method-
ological or practical transfers between fields [34.41,
§3.3], [34.45, 46]. In any case, when discussing ques-
tions related to scientific representation, explanation, or
confirmation, philosophers of science must watch out
that answers may sometimes differ for the models that
scientists work with daily (and which more and more
require computers to be investigated), and for simple
analytically solvable models, which philosophers more
naturally focus upon, and which may have a specific
scientific status regarding the construction of knowl-
edge and the development of families of models in each
field.

34.2 The Variety of Computer Simulations
and Computational Models

Computer simulations involve the use of computers
to represent and investigate the behavior of physical
systems (Sect. 34.2.1). Beyond this simple character-
ization, various types of computer simulations can be
met in science, each with its specificities, and, it is
important to distinguish them to avoid undue extrap-
olations. Differences can be met at various levels of
description. Computing machines can be digital or ana-
log (Sect. 34.2.2). Digital computers are usually used
to carry out numerical computations (Sect. 34.2.3),
even if all computer simulations do not involve op-
erations on numbers (Sect. 34.2.4). In both cases,
computations may be deterministic or nondeterminis-
tic (Sect. 34.2.5). Finally, various types of mathematical
and physical computational models can be met across
science, such as equation-based models, agent-based
models, coupled models or multiscale models, but, not
all important computational methods or mathematical

frameworks are used to carry out computer simulations
(Sect. 34.2.6).

My purpose in this section is to present and charac-
terize different important types of simulations, which
are used in scientific practice and will regularly be
referred to in the following sections, and to high-
light some specific epistemological questions related to
them.

34.2.1 Working Characterization

In science, computer simulations are based on the use
of computers. A computer is a physical apparatus which
can reliably be used to carry out logical and mathemat-
ical operations. A computer simulation corresponds to
the actual use of a computer to investigate a physical
system S, by computationally generating the descrip-
tion of some of the states of one of the potential
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trajectories of S in the state space of a computational
model of S (working characterization).

This characterization is not meant as a full-blown
definition (Sect. 34.6) but as a synthetic presentation of
important features of computer simulations.

First, it emphasizes that the development of com-
puters is a central step in the recent evolution of science,
which was made possible by steady conceptual and
technical progresses in the twentieth century. It can
therefore be expected that computational aspects are
often, though not necessarily always, central for the
epistemological analysis of computational science and
computer simulations (Sect. 34.3). Second, the work-
ing definition is meant to emphasize that all uses of
computers in science cannot be seen as computer sim-
ulations. Typically, the use of computers to analyze big
data is not considered as a computer simulation since
the dynamics of the target system is not represented.
Third, the characterization remains neutral regarding
the question of whether in science there are simulations
that are not based on the use of computers (what-
ever these could be). It is not incompatible with the
claim that computer simulations are some sort of ex-
perimental activity, even if people willing to endorse
such claims need to explain and justify in which sense
the corresponding uses of computers can be considered
as experimental (Sect. 34.5). Finally, since different
types of computers exist, computer simulations may
correspond to various types of objects. The working
definition emphasizes that, in order to analyze actual
science, the emphasis should be primarily on models
of computations that can have an actual physical re-
alization, and on physical systems that can be used
in practice for scientific purposes – even if investiga-
tions about potential machines, and how some physical
systems could instantiate them, may be relevant for
foundational issues.

I now turn to the description of important types of
computer simulations that have been, or still are, used
in science and that figure in epistemological discussions
about computer simulations.

34.2.2 Analog Simulations
and Their Specificities

Analog computers were important tools for scientific
computing till the late 1960s, during which with hand-
books of analog computation were still being writ-
ten [34.47, 48], and attempts were made in the early
1970s to link analog and digital computers. Analog
simulations and physical analog systems are still occa-
sionally used to investigate physical systems.

An analog computer is a physical machine which
is able to carry out algebraic and integrodifferential

operations upon continuous physical signals. Thus, op-
erations that would be difficult to program on a digital
computer are immediately possible on an analog ma-
chine. The specificity of analog machines is that they
contain physical elements whose dynamics decisively
contribute to the dynamic instantiation of these math-
ematical operations. For a machine to be used as an
analog computer, its physical dynamics must be explic-
itly known and completely under control so that there
is no uncertainty about the operations which are carried
out. While systems like wind tunnels cannot be made to
compute several different dynamics, mechanical analog
computers like the differential analyzer and electrical
analog computers can be used as general-purpose com-
putational tools.

Even if analog computers and analog simulations
are seldom used nowadays, understanding them is epis-
temologically important. For instance, while quantum
computation is an extension of classical digital com-
putation, quantum analog computing, which involves
no binary encoding, may prove useful for the purpose
of the quantum simulation of physical systems [34.49].
Analog computers are considered to be potentially more
powerful than digital machines and to be actually in-
stantiated by physical systems, even if we are unable
to use them to the full extent of their capacities be-
cause of analog noise or the impossibility of precisely
extracting the information they process. The analysis
of analog computability is also important for foun-
dational studies aimed at determining which types of
actual computers devices could be used for the pur-
poses of computer simulations, how much resources we
may need to simulate physical systems or what natu-
ral systems can compute [34.50–52]. For example, the
General Purpose Analog Computer was introduced by
Shannon as a model of the differential analyzer, which
was used from the 1930s to 1960s.

Finally, understanding how analog computers work
is important to understand analog simulations and how
they differ from digital simulations. As is pitifully
emphasized by Arnold [34.53, p. 52], the failure to
distinguish properly between digital computer simula-
tions and analog simulations can be (and has recently
been) a major source of error in the philosophical dis-
cussions of computer simulations. Analog computers
physically instantiate the mathematical dynamics which
they are used to investigate. Therefore, the analog com-
putational model that is analyzed is instantiated both
by the physical computer and by the target system that
is being simulated. Thus, the simulating and simulated
processes share a common structure and are isomor-
phic [34.54], which need not be the case for digital
simulations (Sect. 34.5.3). Importantly, this common
structure is purely mathematical, and involves dimen-



Computer Simulations and Computational Models in Science 34.2 The Variety of Computer Simulations and Computational Models 741

Part
G
|34.2

sionless quantities [34.55, Chap. 8]. While the need to
describe systems in terms of dimensionless quantities
is a general one in the empirical sciences [34.56–58],
and is also crucial for digital simulations, here it is
specifically important to understand the type of reason-
ing involved in analog simulations. Indeed, the physical
description of the simulating and simulated systems
matter only in so far as one needs to justify that they in-
stantiate a common dimensionless dynamical structure.
In brief, such analogical reasoning does not involve
any direct comparison between the physical material
properties of the simulating and simulated systems:
the mathematical structure mediates the comparison. In
other words, even with analog simulations, an analysis
of the similarities of the two systems is irrelevant once
one knows which analog computation is being carried
out by both systems.

34.2.3 Digital Machines, Numerical Physics,
and Types of Equivalence

In digital machines, information is processed discretely,
coded in binary digits (1 or 0), and stored in transistors.
Computations involve the transition between computa-
tional states. These transitions are described in terms
of logical rules between the states. If these rules can
be described in a general form, they may be described
in terms of equations involving variables. Digital com-
puters can have various types of architecture with dif-
ferent computational performances. Traditionally, soft-
ware was written for sequential computation, in which
one instruction is executed at a time. In contrast, modern
supercomputers are designed to solve tasks in parallel,
and parallelism can be supported at different levels of
architecture, which often implies the need to adapt algo-
rithms, if not models, to parallel computation [34.59].

Digital machines can be used to develop different
types of computer simulations. Much computational
science is numerical: binary sequences code for num-
bers and computers carry out numerical operations on
these numbers by processing the binary strings. Since
computers can only devote limited memory to repre-
sent numbers (e.g., with floating-point representation),
numerical science usually involves numerical approxi-
mations. In other words, computer simulations do not
provide exact solutions to equations – even if the notion
of an exact solution is not as straightforward as philoso-
phers usually take it to be [34.60].

Different types of equivalence between compu-
tations, and, by extension, computer simulations,
should be distinguished beyond equivalence at the bit
level [34.61]. Logical and mathematical expressions
and algorithms can be mathematically equivalent when
they refer to, or compute, the same mathematical object

or some of its properties. Because of floating-point rep-
resentation, round-off errors cannot be avoided in simu-
lations. When algorithms result in small cumulative er-
rors, they are stable and two such stable algorithms may
be considered as numerically equivalent – although they
need not be computationally equivalent in terms of their
computational efficiency. Finally, based on the type
of inquiry pursued, wider notions of representational
equivalence can be defined at the computational model
or computer simulation level. Typically, two computa-
tions yielding the same average quantity, or describing
the same topology of a trajectory, may be considered
as equivalent. Overall, this shows that analyses of the
failures and predictive or explanatory successes of com-
puter simulations must often be rooted in the technical
details of computational practices [34.62]. From this
point of view, an important part of computational sci-
ence can be seen as the continuation of the numerical
analysis tradition presented in Sect. 34.1.2.

34.2.4 Non-Numerical Digital Models

A large part of science gives a central role to scientific
theories couched in terms of differential equations re-
lating continuous functions with their derivatives. For
this reason, much of computational science is based
on finite-difference equations aimed at finding ap-
proximate numerical solutions to differential equations.
However this theory- and equation-oriented picture
does not exhaust actual practices in computational sci-
ence. First, computer simulations can be carried out in
the absence of theories – which turns out to be a prob-
lem when it comes to the explanatory value of computer
simulations (Sect. 34.4). Second, even when equation-
based theories exist, computational models are not nec-
essarily completely determined by these theories and by
mathematical results describing how to discretize equa-
tions appropriately (Sect. 34.3.2). Finally, even when
well entrenched, equation-based, theories exist, digital,
but non-numerical, computer simulations can be de-
veloped. This perspective was advocated in the 1980s
by computer scientists like Fredkin, Toffoli, or Mar-
golus. Building on the idea previously expressed by
Feynman, that maybe “nature, at some extremely mi-
croscopic scale, operates exactly like discrete computer
logic” [34.63], they wanted to develop “a less round-
about way to make nature model itself” [34.64, p. 121]
than the use of computers to obtain approximate numer-
ical solutions of equations. The idea was to represent
more directly physical processes by means of phys-
ically minded models, with interactions on a spatial
lattice providing an emulation “of the spatial locality of
physical law” [34.65] and to use exact models obeying
discrete symbolic dynamics to dispense with numer-
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ical approximations. In practice, this resulted in the
renewed development of cellular automata (hereafter
CA) studies and their use for empirical investigations.
A CA involves cells in a specific geometry; each cell
can be in one of a finite set of states, and evolves fol-
lowing a synchronous local update rule based on the
states of the neighboring cells. The field of CA was
pioneered in the 1940s by Ulam’s works on lattice net-
works and von Neumann’s works on self-replicating
automata. It was shown over the decades that such mod-
els, though apparently over-simplistic, can not only be
successfully used in fields as different as the social sci-
ences [34.66] and artificial life [34.67], but also physics,
in which they were shown in the late 1970s and 1980s to
be mesoscopic alternate to Navier–Stokes macroscopic
equations [34.68].

34.2.5 Nondeterministic Simulations

Another important distinction is between determinis-
tic and nondeterministic algorithms. From the onset,
computers were used to execute nondeterministic algo-
rithms, which may behave differently for different runs.

Nondeterministic simulations involve using random
number generators, which can be based on random
signals produced by random physical processes, or
on algorithms producing pseudorandom numbers with
good randomness properties. Overall, the treatment of
randomness in computer simulations is a tricky issue
since generating truly random signals, with no spurious
regularities which may spoil the results by introducing
unwanted patterns, turns out to be difficult.

Monte Carlo methods, also called Monte Carlo
experiments, are a widely used type of nondetermin-
istic simulations. They were central to the Manhattan
project, which led to the production of the first nu-
clear bombs and contributed heavily to the development
of computer simulations. They can be used for vari-
ous purposes such as the calculation of mathematical
quantities like Pi or the assessment of average quan-
tities in statistical physics by appropriately sampling
some interval or region of a state space. These practices
are hard to classify and, depending on the case, seem
to correspond to computational methods, experiments,
or full-blown computer simulations. Metropolis and
Ulam [34.69] is a seminal work, Galison [34.70, 71]
correspond to historical studies, and Humphreys [34.8],
Beisbart and Norton [34.72]) to epistemological
analyses.

34.2.6 Other Types of Computer Simulations

It is difficult to do justice to all the kinds of simu-
lations that are seen in scientific practice. New com-

putational methods are regularly invented, and these
often challenge previous attempts to provide rational
typologies. Further, the features presented in the pre-
vious sections are often mixed in complex ways. For
example, CA-based methods in fluid dynamics, which
were not originally supposed to involve numbers or of-
fer exact computations, were finally turned into lattice
Boltzmann methods, which involve making local av-
erages [34.73]. Here, I shall merely present types of
computer simulations that are widely discussed in the
philosophical literature.

Agent-Based Methods
Agent-based methods involve the microlevel descrip-
tion of agents and their local interactions (in contrast
to global descriptions like balance or equilibrium equa-
tions), and provide tools to analyze the microscopic
generation of phenomena. They are often opposed to
equation-based approaches, but the distinction is not
completely sharp, since equations do not need to de-
scribe global behaviors and, when discretized, often
yield local update rules. Agent-based models and simu-
lations are used across fields to analyze artificial, social,
biological, etc., agents. CA models like the Schelling
model of segregation can be seen as agent-based models
even though most such agent-based also involve num-
bers in the descriptions of local interactions. Because
they rely on microscopic descriptions, agent-based sim-
ulations are often at the core of debates about issues
such as emergence [34.74], explanation [34.75], or
methodological individualism in science [34.76].

Coupled and Multiscale Models
Extremely elaborate computational models, developed
and studied by large numbers of scientists, are in-
creasingly used to investigate complex systems such as
Earth’s atmosphere, be it for the purpose of precise pre-
dictions and weather forecasting or for the analysis of
larger less precise trends of climate studies. While in
fluid dynamics, it is sometimes possible to carry out
direct simulations, where the whole range of spatial
and temporal scales from the dissipation to the integral
scale are represented [34.77, Chap. 9], such methods
are too costly for atmosphere simulations, in which sub-
grid models of turbulence or cloud formation need to be
included (see Edwards [34.78] and Heymann [34.79]
for accessible and clear introductions). Also, different
models sometimes need to be coupled like in the case
of global coupled ocean-atmosphere general circulation
models.

These complex computer simulations raise a num-
ber of epistemological issues. First, in the case of
multiscale or coupled models, the physical and com-
putational compatibility of the different models can be
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a tricky issue, and one must be careful that it does
not create spurious behavior in the computer simulation
(see Winsberg [34.16, 80], Humphreys [34.41, 81] for
more analyses about such models). Second, since there
are various ways of taking into account subgrid phe-
nomena, pluralism in the modeling approaches cannot
be avoided [34.82]. Importantly, the existence of differ-
ent incompatible models need not be seen as a problem,
and scientists can try to learn by comparing their results
or elaborate ensemblemethods to try to deal with uncer-
tainties [34.83]. The development of investigations of
such large-scale phenomena requires collective work,
both within and between research teams. Typically, not
only the interpretation of the models, their justification,
the numerical codes [34.84], but also the standard of
results [34.78, 85] must be shared by members of the
corresponding communities. An important but still un-
explored question is howmuch the collective dimension
of these activities influences epistemologically how
they are carried out. From this point of view, the epis-
temology and philosophy of computational models and
computer simulations can be seen as another chapter of
the analysis of the collective dimension of science.

Computational Methods
versus Computer Simulations

Not all major families of mathematical and compu-
tational methods are used to produce computational
models or computer simulations of empirical systems.
Evolutionary algorithms are used for the investigation
of artificial worlds, or of foundational issues about evo-
lution, and they have important applications in the field
of optimization methods. Artificial neural networks are
used in the field of machine learning and data learn-
ing and to predict the behavior of physical systems
out of large databases. Bayesian networks are helpful
to model knowledge, develop reasoning methods, or
to treat data. Overall, all these computational methods
have clear practical applications. They can be used for
scientific tasks, sometimes concurrently with computer
simulations in the case of predictive tasks. However, no
genuine representations of physical systems and their
dynamics seem to be attached to their use – even if, as
the development of CA-based simulations has shown,
novel formal settings may eventually have unexpected
applications for modeling purposes in the empirical
sciences.

34.3 Epistemology of Computational Models
and Computer Simulations

Epistemologists analyze whether and howmuch knowl-
edge claims are justified. In this case, it requires analyz-
ing the specific roles played by computer simulations
in the production and generation of items of knowl-
edge (Sect. 34.3.1). Different levels of description and
analysis can be relevant when investigating the epis-
temology of computer simulations, in addition to that
of the computational model and how it is theoretically
or experimentally justified (Sect. 34.3.2). Importantly,
how computer simulations are justified, and why spe-
cific computational models are used by scientists, are
overlapping (though not identical) questions. For ex-
ample, field- or inquiry-specific explanations of the
use of computer simulations fail to account for cross-
disciplinary recurrences in the use of computational
models, which may have more general mathematical
or computational explanations (Sect. 34.3.3). Overall,
computer simulations are one of the main sources of
knowledge and data in contemporary science, even if
the sense in which they produce new data and knowl-
edge is often misunderstood (Sect. 34.3.4).

34.3.1 Computer Simulations
and Their Scientific Roles

Science, as an institution, aims to reach epistemic goals
of various sorts, both propositional (like reaching some
epistemic states, typically justified true beliefs) and
practical (like being able to reliably manipulate some
physical systems). Epistemologically analyzing science
requires the study of the reliability and efficiency of sci-
entific procedures to reach these goals. Accordingly, to
develop the epistemology of computer simulations, one
first needs to single out their different scientific goals.

Even if they also serve pedagogical or expository
purposes, most computer simulations can be described
as activities aimed to develop knowledge. There ex-
ist various types of scientific knowledge (see Humph-
reys [34.81] for an overview), which raise specific prob-
lems, and, conversely, various types of knowledge can
be produced by computer simulations.

Typically, items of knowledge may differ in how
they are justified (theoretically, experimentally, induc-
tively, etc.), and whether they were reached by a priori
or a posteriori investigations. They may also differ
regarding the activities needed to produce them and
the type of information that they provide. For exam-
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ple, predictive or explanatory knowledge, or knowledge
about how systems behave and can be controlled are
of different types. Some scientific roles can be general
(predicting) and others are very specific. For example,
computer simulations are used to develop evidential
standards in physics by simulating detection procedures
and identifying patterns of data (signatures) [34.86].
Overall, developing a coherent and fine-grained episte-
mology of computer simulations would require drawing
a map of their various roles to see how much their epis-
temological features are general or contextual and role
specific.

Let us now be more specific. In the twentieth cen-
tury, the role of experiments, as sources of empirical
evidence about nature and guides in the selection of
theories, was repeatedly, if not exclusively, empha-
sized by empiricist philosophers of science. Conversely,
activities which did not provide such evidence were
mainly seen as serving theoretical purposes. Typically,
models were first seen as being primarily of a theoret-
ical nature [34.20, §5]. In this perspective, Models as
Mediators, in 1999, represented a significant advance.
Morgan and Morrison, by presenting a more precise
“account of what [models] do” in science [34.20, p. 18],
offered a more nuanced epistemological picture, where
models were shown to have functions as diverse as
investigating theories and the world, intervening, help-
ing for measurement purposes, etc. Since an important
role of computer simulations is to demonstrate the
content of models [34.13] or unfold well-defined sce-
narios [34.87], computer simulations can be expected
to have, or contribute to, similar roles to those described
by Morgan and Morrison and to potentially share these
roles with other demonstrative activities like argumen-
tation or mental simulations.

Importantly, such a description of science, where
items or activities as diverse as theories, models, com-
puter simulations, thought experiments, or experiments
may serve partly overlapping purposes, remains com-
patible with empiricism provided that experiments are
seen as, in the architecture of knowledge, the only ul-
timate source of primary evidence about the nature of
physical systems. It is also compatible with the claim
that secondary, derived sources of knowledge, like the-
ories, models, or simulations, can sometimes be more
reliable than experiments to provide information about
how systems behave, in particular in cases in which ex-
perimental evidence is hard to come by (Sect. 34.5.4).

Overall, it is unlikely that there is such a thing as
the epistemology of computational models and simu-
lations. If the various roles of computer simulations
are specific cases of general functions, like demon-
strating or unfolding, there may be such a thing as
a general, but incomplete, epistemology of computer

simulations, corresponding to the general epistemolog-
ical problems raised by such general functions. In any
case, to complete the picture, one needs to go deeper
into the analysis of the roles that computer simulations
serve within scientific practices and how they fulfill
these roles in various types of contexts. This program
is not incompatible with the philosophical perspectives
of some of the advocates of the so-called practice turn
in science [34.88], and in particular of authors who put
contextually described scientific activities at the core of
their description of science [34.89, 90].

34.3.2 Aspects of the Epistemological
Analysis of Computer Simulations

A Multilayered Epistemology
Epistemology analyzes the types of justifications that
we have for entertaining knowledge claims, and inves-
tigates how and why we epistemically fail or succeed.
In the case of computer simulations, failure may take
place at various levels, from the material implementa-
tion of the computation to the physical model that is at
the core of the inquiry, and at all the intermediate se-
mantic levels of interpretation that are needed to use
computers for the investigation of models (see Barber-
ousse et al. [34.91] for a general description and Grim
et al. [34.92] for a discussion of some specific failures
found in computer simulations). Overall, the epistemol-
ogy of computer simulations involves discussing the
reasons that we have for claiming:

1. The computers that we use work correctly.
2. The programs or algorithms do what we want them

to do.
3. The computer simulations, qua physical represen-

tations, correctly depict what we want them to
represent.

Steps 1 and 2 correspond to questions related to
engineering and computer science. I shall not discuss
these at length but will simply illustrate them to show
how serious they are in this context. For example,
at the architectural level, parallel computing requires
coordination the different cores of computers so that
all potential write-conflicts in the memory are solved.
At the program level, when trying to solve a prob-
lem P with an unknown solution S, scientists need to
prove the correctness of the algorithms they use and
to verify that the programs written do indeed execute
these algorithms. Many such verification problems are
undecidable, which means that no general versatile pro-
cedure can be found to make this verification for all
cases. However, this does not imply that proofs of the
correctness of the algorithm cannot sometimes be pro-
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vided for specific problems. Overall, scientists in this
field still actively investigate and debate how much al-
gorithms can be verified (see Fetzer [34.93], Asperti
et al. [34.94] and Oberkampf and Roy [34.95] for dis-
cussions). At a higher mathematical level, as we saw
earlier, many computational methods provide numeri-
cal methods for approximately solving problems, and
the stability of algorithms can be a source of concern,
which means that analyzing computational errors is part
of the epistemology of simulations [34.62].

Finally, one needs to assess whether the approxi-
mations in the solution, as well as the representational
inadequacies of the model, are acceptable regarding
the physical inquiry pursued. At this interpretational
level, because of the variety of theoretical contexts
in which computer simulations are carried out, there
is no single and general way in which the reliabil-
ity of the results they provide can be analyzed. The
credentials of computer simulations will be different
depending on whether a sound theory is being used,
how much uncertainty there is about the initial condi-
tions, how complex the target system is, whether drastic
simplification assumptions have been made etc. Also,
depending on what the simulation is used for, and what
type of knowledge it is meant to provide, the justi-
ficatory requirements will be more or less stringent.
It takes different arguments to justify that based on
a simulation one knows how to represent, control, pre-
dict, explain, or understand the behavior of the system
(see Sect. 34.4 for a discussion of the last two cases,
and [34.96] for similar analyses). Similarly, precise
quantitative spatial-temporal predictions are in need
of much pointed justifications than computer simula-
tions aimed at studying average quantities or qualitative
behaviors of systems. Importantly, this discussion of
the reliability of computer simulations overlaps sig-
nificantly with that of the epistemology of physical
models, and with how the results issued from approx-
imate, idealized, coarse grained, or simply partly false
models can still be scientifically valuable (see Por-
tides Chap. 2, this volume; Frigg and Nguyen Chap. 3,
this volume). However, in the present context, it is im-
portant to emphasize that, even if the content of models
obviously constrains the reliability of the information
that can be extracted from them, models do not by
themselves produce results – only procedures which in-
vestigate them do. In this perspective, the epistemology
of computer simulations is a reminder that reliabil-
ity primarily characterizes practices or activities that
produce knowledge and that models, taken alone, are
not such practices. In other words, epistemological dis-
cussions about the reliability of models as knowledge
providers make sense only by explicitly reintroducing
such practices or when it can be assumed that reliably

extracting all their content is possible, an assumption
that, in the framework of computational science, is of-
ten not plausible.

From Theoretical to Empirical Justifications
Computer simulations have often been viewed as ways
of exploring theories by hypothetico-deductive meth-
ods. This characterization captures a part of the truth,
since existing theories are often a starting point for the
construction of computer simulations. In simple cases,
computer simulations can mainly be determined by the-
ories, like in the case of direct simulations [34.77] in
fluid dynamics, which derive from Navier–Stokes equa-
tions, and in which all relevant scales are simulated and
no turbulence model is involved.

However, taken as a general description, this view
misrepresents how computer simulations are often pro-
duced and their validity justified. As emphasized by
Lenhard [34.97], even when theoretical equations are
in the background, computer simulations often result
from some cooperation between theory and experi-
ments. For example, in 1955 when Norman Phillips
managed to reproduce atmospheric wind and pressure
relations with a six-equation model, which arrange-
ment of equations could lead to an adequate model of
the global atmosphere was uncertain and the need for
experimental validation was primordial to confirm his
speculative modeling assumptions. Overall, the role of
empirical inputs in simulation studies is usually cru-
cial to develop phenomenological modules of models,
parameterize simulations, or investigate their reliability
based on their empirical successes [34.15, 17].

At the same time, since computer simulations are
used precisely in cases where empirical data are absent,
sparse, or unreliable [34.16], sufficient data to build up
and empirically validate a computational model may
be missing. In brief, in some cases, computer simula-
tions can be sufficiently constrained neither by theories
nor by data and are somewhat autonomous. From an
epistemological point of view, this potential situation
of theoretical and experimental under-determination is
not something to be hailed, since it undermines the sci-
entific value of their results (see also Sect. 34.4.2).

The Epistemology of Complex Systems
Because computer simulations are generally used to
analyze complex systems, their epistemology partly
overlaps that of complex systems and their modeling.
It involves the analysis of simplification procedures
at the representational or demonstration levels and of
how various theoretical or experimental justifications
are often used concomitantly. Overall, when it comes
to investigating complex systems, obtaining reliable
knowledge is difficult. Thus, any trick or procedure that
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works is welcome and the result is often what Winsberg
has labeled a motley epistemology [34.16].

At the same time, sweeping generalizations should
be avoided. Philosophers studying computer simula-
tions have too often cashed in their epistemology in
terms of that of the most complex cases, such as com-
puter simulations in climate science, which are charac-
terized by extreme uncertainties and the complexity of
their dynamics. But computer simulations are used to
investigate systems that have various types and degrees
of complexity, and whose investigation meets different
sorts of difficulties. It is completely legitimate, and po-
litically important, that philosophers epistemologically
analyze computational models and computer simula-
tions in climate science (see, e.g., [34.98] for an early
influential article). However, to obtain a finer grained
and more disentangled picture of the epistemology of
computer simulations, and not to put everything in the
same boat, a more analytic methodology should be ap-
plied. More specifically, one should first analyze how
the results are justified in more simple cases of com-
puter simulations where specific scientific difficulties
are met independently. In a second step, it can be an-
alyzed how adding up scientific difficulties changes
justificatory strategies and when exactly more holistic
epistemological analyses are appropriate [34.99]. In this
perspective, much remains to be done.

Epistemic Opacity
Epistemic opacity is present in computer simulations to
various degrees and has various origins.

Models are often said to be white, gray, or black
boxes depending on how they represent their target sys-
tem. White-box models describe the fundamental laws
or causal mechanisms of systems whereas black-box
models simply correctly connect different aspects of
their behavior. This distinction partly overlaps with that
of theoretical and phenomenological models (see Bar-
berousse and Imbert [34.100, §3.2] for sharper distinc-
tions about these last notions). Computer simulations
can be based on all types of such models, which may
affect the understanding that they yield [34.101] (see
also Sect. 34.4).

Opacity can also be present at the computational
model or computational process level. Global epistemic
opacity may arise from the complexity of the computa-
tion when it is not possible for an agent to inspect and
verify all steps of the process [34.41, §3.7], [34.102]. It
is in part contingent since it is rooted in our limitations
as epistemic creatures, but it may be in part intrinsic in
the sense that the complexity of the computationmay be
irreducible (see Sect. 34.4.3). Importantly, it is compati-
ble with local epistemic transparency, when any step of
the process can be inspected by a human mind – which

may prove useful in cases in which problems can be
located by testing parts of the process and applying a di-
chotomy procedure. Local transparency requires that all
details of the physical models and computational algo-
rithms used be transparent, which may be more or less
the case. Usually, computer simulationsmake heavy use
of mathematical resource libraries such as code lines,
routines, functions, algorithms, etc. In applied science,
more or less opaque computational software can be
proposed to simulate various types of systems, for ex-
ample, in computational fluid dynamics [34.91, p. 567].
This raises epistemological problems since black-box
software is built on physical models with limited do-
mains of physical validity, and results will usually be
returned even when users unknowingly apply such soft-
ware outside these domains of validity.

Another form of epistemic opacity for individual
scientists arises from the fact that investigating natu-
ral systems by computer simulations may require dif-
ferent types of experts, both from the empirical and
mathematical sciences. As a result, no single scien-
tist has a thorough understanding of all the details of
the computational model and computational dynam-
ics. Such type of opacity is not specific to computer
simulations, since it is a consequence of the epis-
temic dependence between scientists within collabora-
tions [34.103].

34.3.3 Selecting Computational Models
and Practices

How do individual scientists decide to pursue specific
theories, and, in particular, what types of sociological,
psychological, or epistemic factors play a role in such
processes? Conversely, do selected theories share spe-
cific features or properties? Mutatis mutandis, similar
questions can be asked about other elements of science,
such as research programs, experiments, models, prac-
tices, and, in the present case, computational models
and computer simulations. Philosophers have mainly
analyzed these questions by focusing on the explicit
scientific justifications of individual practices, and the
content of the representations involved. As we shall see,
this is only a part of the story.

Explanation of Uses
versus Justification of Uses

A helpful distinction is that between the explanation
(and context) of use of a practice and its scientific jus-
tification within a scientific inquiry aimed at reaching
specific purposes. To use words close to Reichen-
bach’s [34.104, pp. 36–37], while the latter deals with
the objective relation that scientists consciously try to
establish between these given <activities> (simula-
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tions, experiments, etc.,) and the conclusions that are
obtained from them, other aspects of material, computa-
tional, cognitive, or social natures, potentially unknown
to the scientific agents involved in the inquiry, may play
a role to explain that these activities were actually car-
ried out. For example, in the case of the Millennium
Run (a costly simulation in astrophysics), the results
were made publicly accessible. Scientists who were not
involved in the process leading to the decision to carry
out this simulation could try to make the best of it since
it was already there and milk it as much as possible
for different purposes. Or, some scientists may decide
to study biological entities like proteins or membranes
by means of Monte Carlo simulations, because mem-
bers of their teams happen to be familiar with these
tools. However, once they have decided to do so, they
must still justify how their computer simulations sup-
port their conclusions.

In the perspective of explaining actual scientific
uses, one also needs to distinguish between explana-
tions aimed to account for specific uses (e.g., Why was
the millennium simulation carried out in 2005 by the
Virgo consortium?) and those aimed to explain more
general patterns, corresponding to the use of practices
of a given type, within or across several fields of science
(e.g., Why are Monte Carlo simulations regularly used
in this area of physics?, Why are they used regularly
in science?). Importantly, since different instantiations
of a pattern may have different explanations, the ag-
gregated frequency of a scientific practice, like that of
the use of the Ising model across science, may be the
combined effect of general transversal factors and of
inquiry- or field-specific features [34.105].

Field-Specific versus Cross-Disciplinary
Explanations

A tempting move has often been to answer that sci-
entific choices are primarily, if not completely, theory
driven – and are therefore field specific. After all, theo-
ries guide scientists in their predictive and explanatory
activities by fueling the content of their representa-
tions of natural systems. However, a reason to look for
additional elements of explanations is that the spec-
trum of actual modeling and computational practices is
smaller than our scientific knowledge and goals would
allow [34.21, 41, 106]. For example, why do the har-
monic oscillator, the Ising model, the Lotka–Volterra
model, Monte Carlo simulations, etc., play such promi-
nent roles throughout science?

As highlighted by Barberousse and Imbert
[34.105], a variety of significantly different expla-
nations of the greater or lesser use of models of
a given type, and of scientific practices, can be found,
beyond the straightforward suggestion that there are

regularities in nature, which are mirrored by modeling
and computational practices.

Local Factors
The explanation may be rooted in the specificities of
modeling and computational activities. In particular, if
explaining is better achieved by limiting the number
of (types) of (computational) models [34.21, pp. 144–
5], or explanatory argument patterns [34.107], it is
no surprise that often the same computational mod-
els and practices are met. Also, scientists may feel
the need to avoid dispersion of their efforts in cases
when research programs need to be pursued for a long
time before good results can be reached and it is
more profitable to exploit a local mine than to go dig-
ging somewhere else [34.106, Chaps. 4 and 5], [34.21,
pp. 143–4]. More generally, the recurrence of compu-
tational practices may be viewed as another example of
the benefits of adopting scientific standards [34.108].
One may also, in the Kuhnian tradition, put the em-
phasis on the education of scientists, who are taught
to see new problems through the lens of specific prob-
lems or exemplars [34.106, p. 189], and emphasize that
this education has a massive influence on the lineages
of models or practices which are later developed. This
story can have a more or less contingentist version, de-
pending on why the original models or practices at the
lineage seeds are adopted in the first place, and why
these uses are perpetuated and scientists do not emanci-
pate from them after schooling.

Theories may also play an indirect role in the se-
lection of computational models. For example, models
naturally couched in the standard formalism of a theory
may be easier to use, even if the same physics can also
be put to work by using other models. Barberousse and
Imbert [34.100] analyze the case of lattice methods for
fluid simulations in depth, which, though significantly
different from approaches based on Navier–Stokes dif-
ferential equations, can be used for the same purposes,
even if this requires spending time learning and har-
nessing new methods and formalisms, which physicists
may be reluctant to do.

Computational
and Mathematical Explanations

As seen in Sect. 34.1.4, Humphreys [34.41, 81], sug-
gests that most scientific models are tailored to fit the
available mathematics, hence the importance in sci-
entific practice of tractable models (see Humphreys’s
notion of computational template [34.41, §3.4], and
further analyses in [34.45]). Even if one grants the
potential importance of such mathematical and compu-
tational factors, cashing out in detail the corresponding
explanation is not straightforward. Barberousse and
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Imbert [34.105] emphasize that there are various com-
putational explanations. The objective computational
landscape (how intrinsically difficult problems are, how
frequent easy problems are) probably influences how
science develops, even if knowing exactly what it looks
like and how it constrains scientific activity is of the ut-
most difficulty. However, the epistemic computational
landscape (scientists’ beliefs about the objective com-
putational landscape) may just be as important since it
frames modeling choices made by scientists.

Other potentially influential factors may also in-
clude how difficult it is to explore the objective land-
scape (and the corresponding beliefs regarding the
easiness of this exploration), how much scientists, who
try to avoid failure, are prone to resort to tractable
models, or which techniques are used to select such
tractable models (since some specific techniques, like
polynomial approximations, may repeatedly select the
same models within the pool of tractable models). Fi-
nally, modeling conservativeness may also stem from
the computational and result pressure experienced by
scientists, that is, how scarce computational resources
are in their scientific environment and how much scien-
tists need to publish results regularly.

Universality, Minimality,
and Multiple Realizability

Other explanations may be offered in terms of how
weak the hypotheses are to satisfy a model or a dis-
tribution. For example, the Poisson distribution is often
met because various types of stochastic processes sat-
isfy the few conditions that are required to derive
it [34.41, pp. 88–89]. Relationships between models
and how models approximate to each other may also
be important. Typically, the Gaussian distribution is
the limit of various other distributions (see however,
Lyon [34.109] for a more refined analysis and the claim
that in Nature Gaussian distributions are common, but
not pervasive). More generally, models that capture uni-
versal features of physical systems and are rooted in
basic properties, such as their topology, can be ex-
pected to be met more often. Therefore, for reasons
having to do with the mathematics of coarse-grain de-
scriptions, and the explanation of multiple realizability,
many systems fall into the same class and have similar
descriptions [34.110–112] when minimal, macro-level,
or simply qualitative models are built and explored.

Importantly, all the above explanations are not ex-
clusive. Typically, the emphasis on tractability may be
a general one in the sense that models always need to
be tractable if they are to be used by scientists.

34.3.4 The Production of ‘New’ Knowledge:
In What Sense?

Be Careful of Red Herrings!
It is commonly agreed that computer simulations
produce new knowledge, new data, new results, or
new information about physical systems (Humphreys
[34.41], Winsberg [34.113, pp. 578–579], Norton and
Suppe [34.114, p. 88], Barberousse et al. [34.91,
p. 557], Beisbart [34.115]). This can be considered as
a factual statement, since contemporary science, which
is considered to produce knowledge, relies more and
more heavily on computer simulations.

At the same time, the notion of knowledge should
not be a red herring. It is commonly considered that
experiments, inferences, thought experiments, repre-
sentations, or models can bring knowledge, which then
generates the puzzle that widely different activities have
similar powers. The puzzle may be seen as somewhat
artificial since knowledge, especially scientific, can be
of different types [34.81], and when new knowledge is
produced, the novelty can also be of different types. In
this perspective, it may be that what is produced by
each of these activities falls under a general identical
concept but is significantly different. From this point
of view, the real question concerning computer simu-
lations is not whether they produce knowledge, but in
which particular sense they produce knowledge, what
kind of knowledge they produce, what is specific to
the knowledge produced by computer simulations, and
what type of novelty is involved.

A comparison can be made with thought experi-
ments, for which the question of how they can produce
new knowledge has also been debated. Both activi-
ties correspond to the exploration of virtual situations,
and do not involve direct interactions with the sys-
tems investigated. From this point of view, computer
simulations and thought experiments can be seen as
platonic investigation of ideas, with this difference
that, for computer simulations, the mind is assisted by
computers [34.41, p. 115–116]. Overall, computer sim-
ulations have been claimed to sometimes play the same
role of unfolding as thought experiments [34.87], have
sometimes been equated with some types of thought
experiments [34.116], and it has been suggested that
computational modeling might bring the end of thought
experiments [34.117]. Importantly, even if thought ex-
periments are perhaps less used in science than for-
merly, this latter claim seems implausible. The reason
is that there are different kinds of thought experiments,
and many reveal conceptual possibilities that have lit-
tle to do with computational explorations. Arguably, the
possibility to set up computer simulations would have
added nothing to famous thought experiments such as
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those made by Galileo, Einstein, Podolsky and Rosen,
or Schrödinger. (I am grateful to Paul Humphreys for
emphasizing this point.) In any case, a satisfactory
account of these activities should account for both
similarities and differences in how they work epistemo-
logically and how they are used.

In any case, the question of how and what we
can learn about reality by using these methods arises,
even if the sources of puzzlement do not exactly touch
the same points in each case. Indeed, how mental
thought experiments work is more opaque than how
computer simulations do. For this reason, their ratio-
nal reconstruction as logical arguments [34.118, p. 354]
is more controversial than that of computer simula-
tions [34.115], and it is less clear whether their posi-
tive or negative epistemic credentials are those of the
corresponding reconstructed argument [34.119]. (For
example, if certain thought experiments are reliable
because mental reasoning capacities about physical sit-
uations have been molded by evolution, development,
or daily experiments, it is not clear that their logi-
cal reconstruction will more vividly make clear why
they are reliable.) The situation is clearer for com-
puter simulations since the process is externalized and
is based on more transparent mechanisms (see how-
ever Sect. 34.3.2). Then, if computer simulations are
nothing else than (computationally assisted) thinking
corresponding to the application of formal rules, and
their output is somewhat contained in the description of
the computational model, how knowledge is generated
is clearer but the charge of the lack of novelty is heavier.

The Need for an Adequate Notion of Content
Suppose that a physical system S is in a state s at time t
and obeys deterministic dynamicsD. Then, the descrip-
tion of D and s characterizes a mathematical structure
M, which is the trajectory of S in its phase space and
is known as such. If a computer simulation unfolds this
trajectory, then it explicitly shows which states S will
be in. At the same time, any joint description of one
of these states and of the dynamics denotes the same
structure M, which is known to characterize the evo-
lution of S. So, from a logical point of view, no new
content has been unraveled by the computer simulation,
which can at best be seen as a means of producing new
descriptions of identical contents. In brief, if knowl-
edge is equated with that of logical content, computer
simulations do not seem to be necessarily producing
new knowledge. We may even be tempted to describe
computer simulations as somewhat infertile and thereby
perpetuate a tradition according to which formal or me-
chanical procedures to draw inferences, and rules of
logic in particular, are sterile, as far as discovery is con-
cerned, and can at best be used to present pieces of

knowledge that have already been found – a position
defended by Descartes in 1637 in the Discours de la
Méthode [34.120]. This kind of puzzle, though particu-
larly acute for computer simulations, is not specific to
them and is nothing new for philosophers of language –
Frege and Russell already analyzed similar ones. How-
ever, this shows that, pace the neglect for linguistic
issues in the present philosophy of science, without an
adequate theory of reference and notion of content that
would make clear what exactly we know and do not
know when we make a scientific statement, we are ill-
equipped to precisely analyze the knowledge generated
by computer simulations [34.41, 121].

Computational science may also remain somewhat
mysterious if one reasons with the idealizations usu-
ally made by philosophers of science. As emphasized
in Sect. 34.1.4, idealizing away the practical constraints
faced by users is characteristic of much traditional phi-
losophy of science and theories of rationality. In the
present case, it is true that “in principle, there is nothing
in a simulation that could not be worked out with-
out computers” [34.122, p. 368]. Nevertheless, adopting
this in principle position is unlikely to be fruitful here
since, when it comes to actual computational science,
which scientific content can be reached in practice is
a crucial issue if one wants to understand how com-
putational knowledge develops and pushes back the
boundaries of science (see Humphreys [34.41, p. 154]
and Imbert [34.102, §6]).

Overall, it is clear that present computational pro-
cedures and computer simulations do contribute to the
development of scientific knowledge. Thus, it is incum-
bent on epistemologists and philosophers of sciences to
develop conceptual frameworks to understand how and
in what sense computer simulations extend our science
and what type of novelty is involved.

Computer Simulations
and Conceptual Emergence

Computer simulations unfold the content of computa-
tional models. How to characterize the novelty of the
knowledge that they bring us? Since the notion of nov-
elty is also involved in discussions about emergence,
the literature about this latter notion can be profitably
put to work here.

Just as emergence may concern property instances
and not types [34.123, 124, p. 589], the notion of nov-
elty needed here should apply to tokens of properties
instantiated in distinctive systems and circumstances, or
to specific regularities the scope of which covers such
tokens and circumstances. For example, the apparition
of vortices in fluids is in a sense nothing new, since the
behavior of fluids is covered by existing theories in fluid
dynamics, no new concept is involved, and other phe-
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nomena of this type are already understood for some
well-studied configurations. At the same time, finding
out that patterns of vortices emerge in configurations of
a new type is a scientific achievement and the discovery
of some new piece of knowledge.

Importantly, as emphasized by Barberousse and
Vorms [34.125, p. 41], the notion of novelty should be
separated from that of surprise. When the exact value
of a variable is precisely learnt and lies within the
range that is enabled by some physical hypothesis or
principle, we have a kind of unsurprising novelty. Bar-
berousse and Vorms give an example from experimental
science, but computer simulations may also provide ex-
act values for quantities, which agree with general laws
(e.g., laws of thermodynamics) and are therefore partly
expected.

In addition, computer simulations can provide cases
of surprising novelty, concerning behaviors that are
covered by existing theories like chaotic behavior for
classical mechanics. Indeed, Lorenz attractor and be-
haviors of a similar type were discovered by means
of computer simulations of a simplified mathematical
model initially designed to analyze atmospheric con-
vection, and this stimulated the development of chaos
theory [34.125, p. 42].

This leads us to a type of novelty, related to
what Humphreys calls conceptual emergence. Some-
thing is conceptually emergent relative to a theoretical
framework F when it requires a conceptual apparatus
that is not in F to be effectively represented [34.41,
p. 131], [34.123, p. 585]. The conceptual apparatus
may require new predicates, new laws and sometimes
the introduction of a new theory. Importantly, con-
ceptual emergence is not merely an epistemic notion.
It does not depend on the concepts we already pos-
sess and the conceptual irreducibility is between two
conceptual frameworks. Further, even if instances of
the target pattern can be described at the microlevel
without the conceptually emergent concepts, the de-
scription of the pattern itself, if it is made without
these novel concepts, is bound to be a massive dis-
junction of microproperties, which misrepresents the

macro-pattern qua pattern. Also, the same conceptually
emergent phenomena may arise in different situations
and its description may therefore require an indepen-
dent conceptual framework, just like the regularities of
special science require new concepts, unless one is pre-
pared to describe their content in terms of a massive
disjunction of all the cases they cover [34.126].

Interestingly, various phenomena investigated by
computational science are conceptually emergent. Even
if computer simulations are sufficient to generate them,
identifying, presenting, and understanding them may
require further analyses of the simulated data, re-
descriptions at higher scales and the development of
new theoretical tools. For example, traffic stop-and-go
patterns in CA models of car traffic, emergent phe-
nomena in agent-based simulations, and much of the
knowledge acquired in classical fluid dynamics seem
to correspond to the identification and analysis of con-
ceptually emergent phenomena. Effectively, it is by
conceptually representing these phenomena in different
frameworks that one manages to gain novel informa-
tion about these systems, above and beyond our blind
knowledge of the microdynamics that generates them.

It is important to emphasize that different types
of novelty described above are also met in experi-
ments exploring the behavior of systems for which the
fundamental physics is known. In other words, the po-
tential novelty of experimental results should not be
overemphasized. Even if only experiments can con-
found us [34.127, pp. 220–221] through results which
are not covered by our theories or models, many of
the new empirical data that these experiments provide
us with are no more novel than those produced by
computer simulations. The statements describing these
results are not strongly referential, in the sense that no
unknown aspects of the deep nature of the correspond-
ing systems would be unveiled by a radically new act
of reference [34.87, pp. 3463–3464]. These statements
derive from what we already know about the physical
systems investigated, and the experimental systems un-
ravel them for us. In this sense, they are merely weakly
referential.

34.4 Computer Simulations, Explanation, and Understanding

Can scientists provide explanations by simulating phe-
nomena? If the answer is based on the explanatory
requirements corresponding to the existing accounts
of explanation, it is hard to see why some computer
simulations could not be explanatory (Sect. 34.4.1).
Why the specificities of computer simulations should
necessarily deprive them for their explanatory poten-
tial is also unclear (Sect. 34.4.2), which is compatible

with the claim that computer simulations are used for
inquiries whose results are, on average, less explana-
tory (Sect. 34.4.3). Be this as it may, because they
heavily rely on informational and computational re-
sources, computer simulations challenge our intuitions
about explanatoriness, and in particular the expecta-
tion that good explanations should enable scientists to
enjoy first-person objective understanding of the sys-
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tems they investigate (Sect. 34.4.4). Even if computer
simulations fail to meet these expectations because of
their epistemic opacity, understanding may sometimes
be regained by appropriately visualizing the results or
studying phenomena at a coarser level (Sect. 34.4.5). In
any case, scientific judgments about such issues are in-
fluenced by disciplinary norms, which may sometimes
evolve with the development of computational science
(Sect. 34.4.6).

34.4.1 Traditional Accounts of Explanation

Philosophers of science have discussed intensively the
issue of scientific explanation over the last decades.
The seminal works of Hempel were published in the
1940s, when computational science started to develop.
However, until recently, discussions about computer
simulations and explanations did not interfere with
each other – which could suggest that for theorists
of explanation, how explanations are produced does
not in fact matter. While it is true that many of the
examples of explanatory inquiries analyzed in the liter-
ature are simple and, at least in their most elementary
versions, do not belong to computational science, it
is hard to see why computer simulations could not
in some cases satisfy the requirements corresponding
to major accounts of explanations. According to the
deductive-nomological (hereafter DN) model, one ex-
plains a phenomenon when a sentence describing it is
logically deduced from true premises essentially con-
taining a scientific law [34.128, pp. 247–248]. For
example, the explanation of the trajectory of a comet,
by means of a computer simulation of its trajectory
based on the laws of classical (or relativistic) mechanics
together with the initial positions of all bodies signif-
icantly influencing its trajectory, seems to qualify as
a perfect example of DN explanation – provided that
computer simulations can be seen as deductions [34.91,
115].

Analog statements can be made concerning the
causal and unificationist models of explanations. The
computer simulation of the comet’s trajectory is a way
to trace the corresponding causal processes, described
in terms of mark transmission [34.129] or of conserved
quantities such as energy and momentum [34.130].
Other causal theorists of explanation like Railton have
claimed that explanatory progress is made by detail-
ing the various causal mechanisms of the world and
all the nomological information relevant to the inves-
tigated phenomenon; the corresponding “ideal explana-
tory text” is thereby slowly unveiled [34.131]. But, one
should note that, because such ideal explanatory texts
are necessarily complex, their investigation is almost in-
evitably made by computational means.

Similarly, computer simulations can sometimes be
instantiations of argument patterns that are part of what
Kitcher describes as the explanatory store unifying our
beliefs [34.107]. For example, the computation of the
comet’s trajectory can be seen as an instantiation of
“the Newtonian schema for giving explanations of mo-
tions in terms of underlying forces” [34.132, p. 121,
p. 179].

Be this as it may, computer simulations have often
been claimed, both by scientists and philosophers, to be
somewhat problematic concerning explanatoriness and
lacking some of the features that are expected to go
with the fulfillment of explanatory requirements. This
reproach of unexplanatoriness can be understood in sev-
eral senses.

34.4.2 Computer Simulations:
Intrinsically Unexplanatory?

One may first claim that computer simulations in gen-
eral, or some specific types of them, do not meet
one’s favorite explanatory requirements. For example,
agent-based simulations may be described as not usu-
ally involving covering laws nor providing explanatory
causal mechanisms or histories [34.75, 133]. However,
one should not ascribe to computer simulations re-
proaches that should be made to the field itself. If
a field does not offer well-entrenched causal laws and
one is convinced that explanations should be based
on such laws, then the computer simulations made in
such fields are not explanatory, but this has nothing to
do with computer simulations in general. Also, some
computer simulations are built with scientific material
like phenomenological regularities, which potentially
makes them unexplanatory, but this material could also
be used in the context of explanatory inquiries involv-
ing arguments or closed form solutions to models. Thus,
the problem comes from the use of this material and not
from the reliance on one or another mode of demon-
stration – and claiming that computer simulations are
unexplanatory is like blaming the hammer for the hard-
ness of the rock.

For this reproach to be meaningful (and specific
to computer simulations), it should be the case that
other inquiries based on the same material are indeed
explanatory, but that the corresponding explanations
based on computer simulation are not, because of spe-
cific features of computer simulations or some types
of them. It is not completely clear how this can be
so. Computer simulations are simply means of explor-
ing scientific models and hypotheses by implementing
algorithms, which provide information about tractable
versions of these models or hypotheses. Therefore, their
explanatory peculiarity, if any, should be an effect of
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specific features like the use of algorithms, coding lan-
guages, or external computational processes.

There is no denying that the need to format scien-
tific models and hypotheses into representations that
are suitable for computational treatment comes with
constraints. For example, a recent challenge has been
to adapt coupled circulation models and their algo-
rithms to the architecture of modern massively parallel
supercomputers. Similarly, when one uses CA mod-
els for fluid dynamics, the physical hypotheses must
be expressed in the straightjacket of up-to-date rules
between neighboring cells on a grid. Beyond these gen-
uine constraints on computational practices, one should
remember that, computational languages, provided they
are rich enough, are content neutral in the sense that any
content that can be expressed with some language can
also be expressed with them. Similarly, computational
devices like the computers we use daily are universal
machines in the sense that any solution to a compu-
tational problem (or inference) that can be produced
by other machines can also be produced by them. For
these reasons, it is hard to see why, in principle, com-
puter simulations should be explanatorily limited, since
the theoretical content and inferences related to other
means of inquiries can also be processed by them.

The case of CA models abovementioned exempli-
fies nicely this point. For several decades, CA mod-
els have been used under various names in various
fields; from Schelling’s investigations about spatial seg-
regation in neighborhoods, analysis of shock waves
in models of car traffic, models of galaxies, inves-
tigations of the Ising model, to fluid dynamics (see
Ilachinski [34.134] for a survey). Because existing the-
ories and scientific laws are not expressed in terms of
CA, some philosophers have claimed that CA-based
simulations were merely phenomenological [34.135,
pp. 208–209], [34.9, p. 516]. Nevertheless, Barberousse
and Imbert [34.100] have argued that such bold general
statements do not resist close scrutiny. They present the
case of lattice gas models of fluids and argue that, be-
yond their unusual logical nature, from a physical point
of view, such mesoscopic models and computer sim-
ulations make use of the same underlying physics of
conserved quantities as more classical models, and can
be seen as no less theoretical than concurrent computer
simulations of fluids based on macroscopic Navier–
Stokes equations. Therefore, there is no reason why
such computer simulations could not be usable for sim-
ilar explanatory purposes.

Overall, there is no denying that some (and possi-
bly many) computer simulations are not explanatory.
Providing various examples of unexplanatory computer
simulations is scientifically valuable, but it says nothing
general about their general lack of explanatory power,

unless one shows why unexplanatoriness stems from
specific features of (some types of) computer simula-
tions qua simulations. In the absence of such conceptual
analyses, one can simply conclude that some scientific
uses of computer simulations, or some computational
practices, turn out to be unexplanatory.

34.4.3 Computer Simulations:
More Frequently Unexplanatory?

A different claim is that, given the current uses of
computer simulations in science, they are more often
unexplanatory than other scientific items or activities,
even if this is partly a contingent matter of fact. The
explanatoriness of computer simulations can be threat-
ened in various ways. Computational models may be
built on false descriptions of target systems or may lack
theoretical support and simply encapsulate phenomeno-
logical regularities; they may have been spoiled by the
approximations, idealizations, and modeling tricks used
to simplify models and make them tractable; they may
depart from the well-entrenched explanatory norms in
a field or may not correspond to accepted explanatory
methods. Clearly, none of these features is specific to
computer simulations. However, it may be the case that
because of their current uses in science, computer sim-
ulations more frequently instantiate them.

The Lure of Computational Explorations
Because they are powerful heuristic tools, and because
other means of exploration are often not available,
computer simulations are more often used to toy and
tinker with hypotheses, models, or mechanisms and,
more generally, to experiment on theories [34.135,
136]. This may especially be the case in fields where
there is no well-established theory to justify (or inval-
idate) the construction of models, or where collected
evidence is not sufficient to check that the simulated
mechanisms correspond to actual mechanisms in target
systems. For example, in cognitive science, competing
theories of the mind and its architecture coexisted for
decades, and even modern techniques of imaging like
fMRI (functional magnetic resonance imaging), though
empirically informative, do not provide sufficient evi-
dence to determine how the brain works precisely in
terms of causal mechanisms. Accordingly, in this field,
developing a model that is able to simulate the cog-
nitive performances of an agent does not imply that
one has understood and explained how her brain works,
and more refined strategies that constrain the functional
architecture must be developed if one wants to make
explanatory claims [34.4, Chap. 5]. The issue is all
the more complex in this specific field since the in-
quiry may also involve determining (verses assuming)
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whether neural processes are computations [34.137].
Similarly, in the social sciences, empirically validat-
ing a simulation is far from being straightforward and
as a result the epistemic and, in particular, explana-
tory value of computer simulations is often question-
able [34.138].

Overall, since computer simulations offer powerful
tools to investigate hypotheses and match phenomena,
it is a temptation for scientists to take a step further and
claim that their computer simulations have explanatory
value. In brief, computer simulations offer a somewhat
natural environment for such undue explanatory claims.

The Worries of Under-Determination
In the case of computer simulations, the higher fre-
quency of inappropriate explanatory claims may be
reinforced by the combination of several factors.

When toying with hypotheses, scientists are often
interested in trying to reproduce some target phe-
nomenology, so they often do not tinker in a neutral
way. The specific problemwith computer simulations is
that, in many cases, getting the phenomenology right is
somewhat too easy, and the general problem of under-
determination of theoretical claims by the evidence is
particularly acute.

First, computer simulations are often used in cases
where data are scarce, incomplete, or of low quality
(see, e.g., [34.78, Chap. 10] for the case of climate data
and how making data global was a long and difficult
process). The scarcity of data can also be a primary mo-
tivation to use computer simulations to inquire about
a system for which experiments are difficult or impos-
sible to carry out, like in astrophysics [34.139]. Further-
more, knowledge of the initial and boundary conditions
out of which the computer simulations should be fed
may also be incomplete, which leaves more latitude
for scientists to fill in the blanks and possibly match
data. As a result, confidence in the result of com-
puter simulations like the Millennium Run and in their
representational and explanatory success is in part un-
dermined [34.139].

Second, computer simulations usually involve more
variables and parameters than theories. For example,
for a 10� 10 grid with cells characterized by three
variables, the total number of variables is already 300.
This raises the legitimate suspicion that, by tuning vari-
ables in an appropriate way, there is always a means
to obtain the right phenomenology. (Ad hoc tuning
is of course not completely straightforward, since the
many variables involved in a computer simulation are
usually jointly constrained. Typically, in a fluid simu-
lation, all cells of the grid obey the same update rule
and are correlated.) This possibility of tuning variables
and parameters is indeed used in fields like machine

learning, which can be based, for example, on the use
of artificial neurons. In such fields, one first combines
a limited number of elementary mathematical functions
(e.g., artificial neurons) that, when adequately parame-
terized, reproduce potentially complex behaviors found
in databases (the learning phase). In a second step,
one uses the parameterized functions (e.g., the trained
neural network) on new cases in the hope that extrap-
olation and prediction are possible. In such cases, even
if the right phenomenology is reproduced, and extrap-
olation partly works, it is clear that the trained neural
network and the corresponding mathematical functions
do not explain the phenomena. Overall, this means
that the ability to reproduce some potentially complex
phenomenon is far from being sufficient to claim that
the corresponding computer simulation has explanatory
power (see also [34.140] for the issue of the over-fitting
of computer simulations to data).

Third, when scientists do succeed, they may be sub-
ject, as other human creatures, to confirmation biases,
overweigh their success and tend to ignore the fact that
various mechanisms or laws can produce the same data
(or that other aspects of their computer simulations do
not fit). While such biases are not specific to computa-
tional inquiries, they are all the more epistemologically
dangerous since matching phenomena is easy.

Complex Systems Resist Explanation
Because they are very powerful tools, computer simu-
lations are specifically used for difficult investigations,
which usually have features that may spoil their ex-
planatory character [34.141, 142]. Typically, in the nat-
ural sciences, computer simulations and computational
methods are centrally used for the study of so-called
complex systems [34.143, 144], see also Chap. 35. Re-
alistically investigating complex systems would imply
taking into account many interrelated nonlinear aspects
of their dynamics including long-distance interactions
and, in spite of the power of modern computers, the cor-
responding models are usually intractable. Therefore,
drastic simplifications need to be made in both the con-
struction of the model and its mathematical treatment,
which often threatens the epistemic value of the results.

Importantly, for the above reasons, the problem of
the explanatory value of computer simulations can arise
even in fields like fluid dynamics where the underly-
ing theories are well known. It is no surprise that this
problem is more acute in fields, such as the human and
social sciences, in which no such theories are available,
the investigated objects are even more complex, sound
data are more difficult to collect and interpret, and the
very nature of what counts as a sound explanation and
genuine understanding is more debated [34.145, 146]
especially in relation to computer simulations [34.133].
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For these reasons, even if there are good arguments for
claiming that computer simulations do not fare worse
than other methods like analytic models or experi-
ments (see [34.40] for the case of economics), it is not
surprising that their potential explanatory power is un-
dervalued.

Overall, it is plausible that often computer simula-
tions have less explanatory power than other methods,
and that this does not stem from their nature but from
the type of uses they usually have in science. If this is
the case, the question of the explanatory power of com-
puter simulations is to be treated on a case-by-case basis
by using the same criteria as for assessing the explana-
tory power of other scientific activities, pace the distrust
that shrouds the use of computer simulations.

34.4.4 Too Replete to Be Explanatory?
The Era of Lurking Suspicion

Theories of explanation should capture our intuitions
about what is explanatory. From this point of view,
it is interesting to see whether computer simulations
meet these intuitions, especially when they fulfill the
explanatory requirements described by theories of ex-
planations.

Computer Simulations
and Explanatory Relevance

Good explanations should not include explanatorily
irrelevant material. While determining whether some
piece of information is explanatorily relevant to explain
some target fact is a scientific task, finding a satis-
factory notion of explanatory relevance is a task for
philosophers. Despite progresses concerning this prob-
lem, current accounts of explanation still fall short of
capturing this notion [34.147, 148]. At the same time,
existing results are sufficient to understand why com-
puter simulations raise concerns regarding explanatory
relevance.

Scientific information, in particular causal laws,
accounts for the behavior of phenomena. Thus, it is le-
gitimate, when trying to explain some phenomenon, to
show that its occurrence can be derived from a scientific
description of the corresponding system. Nevertheless,
even then, one may fall short of satisfying the require-
ment of explanatory relevance. This is clearly explained
by Salmon in his 1989 review of theories of explanation,
where he asks “Why are irrelevancies harmless to argu-
ments but fatal to explanations?” and further states that
“irrelevant premises are pointless, but they have no ef-
fect whatever on the validity of the argument” [34.149,
p. 102]. While philosophers have mainly focused on
the discussion of irrelevant unscientific premises, the
problem actually lies deeper. Parts of the content of

laws or mechanisms, essentially involved in explana-
tory arguments, can be irrelevant to the explanation of
aspects of phenomena that are covered by these laws or
mechanisms [34.148]. So the problem is not simply to
discard inessential (unscientific or scientific) premises,
but also to determine, within the content of the scien-
tific premises that are essentially used in explanatory
derivations, what is relevant and what is not [34.102,
148, 150].

This problem is especially acute for computer sim-
ulations. Take a computer simulation that unfolds the
detailed evolution of a system based on the description
of its initial state and the laws governing it. Then all
aspects of the computational model are actually used in
the computational derivation. At the same time, all such
aspects are not necessarily explanatorily relevant with
respect to all facets of the computed behavior. Typically,
some aspects of the computed behavior may simply de-
pend on the topology of the system, on symmetries in
its dynamics or initial conditions, on the fact that some
initial quantity is above some threshold, etc.

Accordingly, the following methodological maxim
may be proposed: the more an explanation (resp. an
argument) contains independent pieces of scientific in-
formation, the more we are entitled to suspect that it
contains irrelevancies (regarding the target behavior).

At the same time, one should remain aware that
explaining some target phenomenon may sometimes
irreducibly require that all the massive gory details in-
volved in the simulation of the corresponding system
are included. For example, as chaos theory shows it,
explaining the emergence and evolution of a hurricane
may essentially require describing the flapping of a but-
terfly’s wings weeks earlier.

An additional problem is that there is no general
scientific method to tell whether a premise, or some
part of the information it conveys, is relevant. Con-
trarily to what the hexed salt example [34.151] may
perhaps suggest, irrelevant pieces of information within
an explanation do not wear this irrelevance on their
sleeves and are by no means easy to identify. This is
the problem of the lack of transparency, or of opacity,
of irrelevant information.

Overall, since they are based on informationally
replete descriptions of their target systems, computer
simulations legitimately raise the suspicion of being
computational arguments that contain many irrelevan-
cies, and therefore of being poor explanations – even
when they are not.

Computer Simulations, Understanding,
and Inferential Immediacy

Mutatis mutandis, similar conclusions can be reached
regarding the issue of computational resources. Since
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this issue is closely related to the question of how much
computer simulations can bring about understanding,
things shall be presented through the lens of this latter
notion.

It is usually expected that explanations bring under-
standing. Theorists of understanding, while disagreeing
on the precise nature of this notion, have explored
its various dimensions, which provides a good toolkit
to analyze how computer simulations fare on this is-
sue.

Hempel cashes in the notion of understanding in
terms of nomic expectability. From this point of view,
taken as explanatory arguments, computer simulations
seem able to provide understanding since, like other
scientific representations, they can rely on nomological
regularities. Further, in contrast to sketchy explanations,
they make the nomic dependence of events explicit.
Consider the explanation analyzed by Scriven that “the
impact of my knee on the desk caused the tipping over
of the inkwell” [34.152]. The hidden strategy described
byWoodward [34.153] is to claim that the value of this
latter nonnomological explanation is to be measured
against an ideal explanation, which is fully deductive
and nomological and describes the detailed succession
of events that led to the stain on the carpet, even if this
complete explanation is often inaccessible. From this
point of view, a computer simulation can offer a way to
approach such an ideal explanation, by providing an ex-
plicit deduction of the lawful succession of events that
brought about the explanandum. However, an epistemic
problem is that, once such a computer simulation has
been carried out (and properly stored), it is possible to
explicitly highlight any part of it, but it is not possible to
scrutinize all parts because there are too many of them.
This is one of the reasons why computer simulations are
intrinsically opaque to human minds [34.41, §5.3], see
also Sect. 34.3.2.

Be this as it may, causal theorists of explanation
should agree that computer simulations often contribute
significantly to developing our understanding by re-
ducing uncertainty about the content of causal ideal
explanatory texts, as requested in [34.131].

Computer simulations also seem to be able to pro-
vide unificatory understanding. For unificationists like
Kitcher, understanding is a matter of “deriving descrip-
tions of many phenomena using the same pattern of
derivation again and again” [34.107, p. 423]. Since
computer simulations offer more ways of deriving phe-
nomena, by providing new patterns of derivation or
instantiating existing patterns in more complex cases,
at least some of them contribute to unification.

Things are less straightforward with Woodward’s
account of explanation and understanding. Woodward
argues that a good explanation provides “understanding

by exhibiting a pattern of counterfactual dependence
between explanans and explanandum” [34.154, p. 13].
From this point of view, computer simulations fare well
since, if one does not go beyond their domain of va-
lidity, they provide general patterns of counterfactual
dependence between their inputs I and outputsO, which
are obtained by applying t times their update algorithms
(UA), that is, more formally, O.t; l/D UAt.I/.

Is there a philosophical catch? Woodward also re-
quires that the pattern of counterfactual dependence be
described in terms of a functional relation. But what
is to count as a function in this context? Functions
can be defined explicitly (by means of algorithms) or
implicitly (by means of equations). The advantage of
computer simulations is that they provide algorithmic
formulations based on elementary operations of how the
explanandum varies with the explanans. From this point
of view, computer simulations are more explicit than
models, which simply provide equations linking the ex-
planans and the explanandum. However, the problem is
that with computer simulations any kind of functional
immediacy is lost, since it is computationally costly
to carry out the algorithm. Indeed, Woodward usually
describes straightforward examples of functional de-
pendence like Y D 3X1C 4X2. With such functions, we
may feel that the description of the counterfactual de-
pendence is just there, since, by simply instantiating
the variables and carrying out the few operations in-
volved, specific numerical relations are accessible. In
such simple cases, a human mind can do the work
by itself and answer the corresponding what-if-things-
had-been-different (what-if) questions. In contrast, with
a computer simulation, computing the output takes
much computational power. So the tentative conclusion
is that computer simulations provide understanding in
Woodward’s sense, but this understanding is not imme-
diately accessible, the degree of (non)-immediacy being
described by the computational resources it takes to
answer each what-if question. Importantly, an equation-
based model may give the illusion of immediacy, since
the equation presents a short description of how the
variables are correlated. However, one should watch
out that short equations can be unsolvable, and short
descriptions of algorithms (like O.t; l/D UAt.I/) with
simple inputs can yield complex behaviors that are
computationally costly to predict [34.155].

Similar conclusions can be reached if one focuses
on analyses of understanding proper.De Regt andDieks
propose to analyze understanding in terms of intelligi-
bility, where this latter notion implies the ability to rec-
ognize qualitative characteristic consequences without
performing exact calculations [34.156]. In this sense,
understanding seems to be a matter of immediacy, as
was already suggested by Feynman, who described it as



Part
G
|34.4

756 Part G Modelling and Computational Issues

the ability to foresee the behavior of a system, at least
qualitatively, or the consequences of a theory, without
solving exactly the equations or performing exact cal-
culations [34.157, Vol. 2, 2–1].

Depending on the cases, foreseeing consequences
requires logical and cognitive operations to a greater or
lesser extent. Thus, the above ideas may be rephrased in
a more gradualist way, by saying that the less inferen-
tial or computational steps one needs to go through to
foresee the behavior of a system or the consequences of
a theory, the better we understand it. In this perspective,
computer simulations fare terribly badly, since they in-
volve going through many gory computational steps
and, even once these have been carried out, scientists
usually end up with no simple picture of the results and
no inferential shortcuts that could exempt them from
this computational stodginess for future similar investi-
gations.

Understanding: What Do We Lose
with Computer Simulations?

Before the advent of computational science, explana-
tory advances in science were always the direct product
of human minds and pen-and-rubber methods. There-
fore, any actual scientific explanation that satisfied the
requirements for explanatoriness was also human sized,
and the epistemic benefits logically contained within
such explanations could actually be enjoyed by compe-
tent and informed epistemic agents. In [34.158, p. 299],
Hempel states that an explanatory argument shows that
“the occurrence [of an event] was to be expected” and
he adds “in a purely logical sense.” This addition em-
phasizes that expectation should not be understood as
a psychological notion nor refer to the psychological
aspects of the activity of explaining. In the case of
computer simulations, this addition is somewhat su-
perfluous. Nomic expectability remains for scientists,
since, based on computer simulations, they may know
that they can entertain the belief that an event should
happen. However, this belief is completely cold. Since
the activity of reasoning is externalized in computers,
it is no longer part of the proper cognition of scientists
and does not come with the psychological side-effects
associated with first-person epistemic activities, such as
emotions or feelings of expectation, impressions of cer-
tainty and clarity, or the oft-mentioned aha or eureka
feeling which usually comes with first-person experi-
ences of understanding. In other words, with computer
simulations, the mind is no longer the carrier of the ac-
tivity of explanation, and simply records what it should
believe. Unfortunately, epistemic benefits associated
with the individual ability to carry out this activity are
also lost. Since the explanatory argument can no longer
be surveyed by a human mind, the details of the rela-

tions between the premises of the explanatory argument
and its conclusion are opaque. Therefore, scientists are
no longer able to encompass uno intuitu all aspects of
the explanation and how they are related, to develop
expectations about counterfactual situations (in which
similar hypotheses are met), and the unificatory knowl-
edge that only global insights can provide is also lost.
Overall, with computer simulations the objective in-
telligibility that is enclosed in explanations and can
be accessed by first-person epistemic appropriation of
the explanatory arguments can no longer be completely
enjoyed by scientists (see also [34.159] for further anal-
yses about epistemic opacity in this context). In this
perspective, the problem of computer simulations is not
that they have less explanatory value but that we can-
not have epistemic access to this explanatory value.
In brief, this problem would not pertain to the logic
of computer-simulation-based explanations but to their
epistemology.

New Standards for Understanding?
The gradualist description regarding the need of cogni-
tive and logical operations to foresee consequences (see
Sect. 34.4.4 Computer Simulations, Understanding,
and Inferential Immediacy) suggests that the bound-
ary between cases where intelligibility is present or
is lost is not completely sharp. Importantly, the abil-
ity to foresee consequences depends on various factors
such as the knowledge of physical or mathematical
theorems to facilitate deductions, the knowledge of
powerful formalisms to facilitate inferences, how much
the intuition of scientists has been trained to anticipate
consequences of a certain type and has somewhat in-
ternalized inferential routines, etc., [34.102, §6.4]. In
other words, at least in some cases, the frontiers of what
has a computational explanation, but remains unintelli-
gible to a human mind, can be pushed back to some
extent.

This raises the question of how much the frontiers
of intelligibility can be extended and whether the ideal
of inferential or computational briefness for explana-
tions should be considered as a normative standard.
Two positions are possible. One may claim that genuine
explanations should always yield the possibility for
human subjects to access the corresponding understand-
ing. Or one may claim that, as shown by computational
science, we have gone beyond human-sized science, not
all good explanations can be comprehended by human
minds, and this is not a defect of our science, even if it
is clearly an epistemic inconvenience.

A motivation for endorsing the former claim is that
the lack of intelligibility of explanations often stems
from epistemic flaws of the agents producing them and
can be corrected. Typically, in science, results are often
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laboriously proved and, with the advance of scientific
understanding, shorter and clearer proofs, or quicker al-
gorithms, are found.

Overall, it seems sound to adopt the following
methodological maxim: the more resources we need to
produce (or check) an explanation (resp. an argument,
a proof), the more we are entitled to suspect, in the
absence of contrary evidence, that the explanation is
unduly complex. From this point of view, computer sim-
ulations do not seem flawless, since they make abundant
use of computational and inferential resources. Accord-
ingly, it is legitimate to suspect computer simulations
of providing unduly complex explanations, which have
simpler versions yielding the expected accessible un-
derstanding.

Nevertheless, this philosophical stance may be in-
appropriate in many cases. There is a strong suspicion
that explaining phenomena often requires using an
irreducible amount of resources. This idea of computa-
tional irreducibility has been vocally advanced, though
not clearly defined, by Wolfram [34.155], and philoso-
phers have toyed with close intuitions in recent dis-
cussions about emergence [34.74, 123, 124, 160–162].
Capturing the idea in a clear, robust and fruitful def-
inition is a difficult on-going task [34.163]. However,
there seems to be an agreement that this intuitive no-
tion is not empty, which is what matters for the purpose
of the present discussion. Overall, this means that in all
such cases, asking for computationally simple explana-
tions does not make sense, since such explanations do
not exist. In this perspective, tailoring our explanatory
ideals to our human capacities is wishful thinking, since
in many cases, the inaccessibility of the usual epistemic
benefits of explanations does not stem from our epis-
temic shortcomings.

This suggests that we may have to bite the bullet
and say that, sometimes, computer simulations do bring
full-fledged explanation and objective understanding,
even if, because of our limited cognitive capacities, we
cannot enjoy this understanding and the epistemic bene-
fits harbored by such explanations. In other words, both
of the above philosophical options are correct, though
in different cases.

Ideally, one would like to be able to know when
each of these two options should be adopted. Unfor-
tunately, determining whether a computational process
can be shortcut or a computational problem solved by
quicker algorithms, seems to be in practice opaque
(problem of the lack of transparency of the optimal-
ity of the computational process). This means that in
most cases, when facing a computational explanation
of a phenomenon, one does not know whether there
are computationally or inferentially shorter versions of
this explanation (and we are to be epistemically blamed

for being so explanatorily laborious), or whether one
cannot do better (and the process is intrinsically com-
plex).

Overall, because determining whether explanations
are informationally minimal (regarding the use of rele-
vant information) and whether arguments or computa-
tions are optimal is opaque, computer simulations are
doomed to remain shrouded in suspicion about their ex-
planatoriness, even in cases in which there is no better
(that is, shorter or less informationally replete) ex-
planation. In brief, the era of suspicion regarding the
explanatoriness of computer simulations will not end
soon.

34.4.5 Bypassing the Opacity
of Simulations

Even when computer simulations are epistemically
opaque, some strategies can be tried to regain predictive
power, control, and potentially understanding regarding
the corresponding inquiries.

Understanding, Control
and Higher Level Patterns

As emphasized by Lenhard [34.159], by manipulating
computational models and observing which behavior
patterns are obtained, scientists can try to control the
processes involved and develop “a feeling for the con-
sequences.” Lenhard suggests that this understanding
by control, which is oriented toward design rules and
predictions, corresponds to a pragmatic account of un-
derstanding, which is also involved in the building of
reliable technological artifacts.

Other authors have emphasized that, even if the de-
tails of computer simulations cannot be followed by
human minds, one may sometimes still obtain valuable
insights by building coarse-grained representations of
the corresponding target systems and analyzing whether
macro-dynamics emerge when microinformation is
thrown away [34.164]. Surprisingly, the existence of
coarse-grained dynamics seems to be compatible with
complex, potentially computationally irreducible, dy-
namics at the microlevel [34.165, 166], even if this by
no means warrants that control or understanding can
always be regained at the macro-level. Thus, the ques-
tion arises as to when and how much epistemic virtues
like predictive power, control, and potentially under-
standing, which are somewhat lost at the microlevel,
can be partly recovered at the macro-level, and how the
corresponding patterns can be detected. The treatment
of such questions requires the analysis of logical and
mathematical relations between descriptions of systems
at different scales and, for this reason, it should gain
from ongoing debates and research in the philosophical
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and scientific literature about the emergence of simple
behavior in complex systems.

Visualization and Understanding
Another important issue is how to exploit macro-level
patterns that are present in computer simulations to re-
store partial cognitive grasp of the simulated systems
by humans. Given the type of creatures that we are,
and in particular the high visual performance of the
brain, using visual interfaces can be part of the an-
swer. Indeed, the format of scientific representations
partly determines what scientists can do with them –
whereas, as emphasized by [34.41, p. 95], philosophers
have often considered the logical content of a repre-
sentation to be the only important element to analyze
them. To go further into these issues, sharp analy-
ses of representational systems and their properties are
required. Tools and concepts developed in the Goodma-
nian tradition prove to be extremely useful [34.167]. For
example, Kulvicki [34.29] highlights how much graphs
and images can present information more immediately
than symbolic representations can. This notion of im-
mediacy is cashed in in terms of semantic salience,
syntactic salience or extractability. Vorms further shows
how taking into account formats of representation in
the analysis of scientific reasoning is crucial, since in-
ferences have different cognitive costs depending on
the format of representation [34.168]. Jebeile [34.169]
applies similar concepts to computational models and
argues that visualization tools can have a specific ex-
planatory role since they do not merely present compu-
tational data in more accessible ways, but also suggest
interpretations that are not contained in the original
data, highlight relations between these data, and thereby
point at elements of answers to what-if questions.

Overall, the issue of how much visualization can
convey objective understanding remains debated. For

example, Kuorikoski [34.164] acknowledges that visual
representations are cognitive aids but emphasizes that
they often merely bring about a feeling and illusion of
understanding. So, there is the need of epistemological
analyses which would make clear in which cases, and
how, visual representations can be reliable guides and
self-certifying vectors of knowledge, which partly en-
able their users to determine whether and how much
they should trust them.

34.4.6 Understanding and Disciplinary
Norms

All the above discussion has been based on gen-
eral arguments about explanations and understanding.
However, as already emphasized, explanatory norms
sometimes differ from one field to another, economics
being, at least in its mainstream branches, a paradig-
matic case of a field in which simulation methods are
shunned [34.37]. Similarly, the explanatory status of
computer simulations and computational models varies
across fields like cognitive sciences, artificial intelli-
gence [34.137], artificial life [34.170] or within fields
themselves (see, e.g., [34.171] for the case of computa-
tional chemistry and [34.79] for that of climate science).

This is not the place to discuss whether these varia-
tions regarding explanatory norms are deep, or whether
they result from differences in theoretical contexts, in
the degrees of complexity of the systems investigated,
in the difficulties to collect evidence about them, in
the scientific maturity and empirical success of these
fields, etc. Such questions cannot be answered on the
basis of armchair investigations. Field-specific studies
of the explanatoriness of computer simulations, made
by scholars who are in the same time acutely aware
of present discussions about scientific explanation, are
needed.

34.5 Comparing: Computer Simulations, Experiments
and Thought Experiments

Computer simulations, experiments, and, to a lesser
extent, thought experiments share various similarities,
which calls for an explanation. Indeed, similarities
between experimental activities and computational sci-
ence are even found in mathematics, where some
methods are claimed to be experimental (Sect. 34.5.1).
Computer simulations, experiments and thought exper-
iments can sometimes be seen as ways of carrying out
similar activities, or activities having similar constraints
(Sect. 34.5.2). Should an additional step be made, and
computer simulations be considered as experiments?

A close scrutiny of the existing arguments in favor of
this claim shows that it meets insuperable difficulties,
both regarding the analysis of computer simulations and
experiments. Further, the claim does not even seem nec-
essary to account for the importance of the material
aspects of simulations (Sect. 34.5.3). Finally, even if
computer simulations can yield knowledge, which can
sometimes be more reliable than that produced by ex-
periments, unless a strong case against empiricism is
properly made, computer simulations do not seem to
seriously threaten the unique foundational role of exper-
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iments as the source of primary evidence upon which
science is built (Sect. 34.5.4). In any case, discussions
about the relationships between experiments and com-
puter simulations should remain compatible with the
actual existence of hybrid (both computational and ex-
perimental) methods (Sect. 34.5.5).

When in the 1990s philosophers of science started
investigating computer simulations, they soon realized
that the object of their inquiry cross-cut traditional
categories like those of theories, models, experiments
or thought experiments. Similarities with experiments
were particularly striking, since, among other things,
computer simulations involved the treatment of mas-
sive data and statistical reasoning, required robustness
analysis, and were claimed to yield new knowledge.
As a result, computer simulations were suggestively
dubbed by various authors as computer experiments,
numerical experimentation or in-silico thought experi-
ments, even though it was not always conceptually clear
what these potentially metaphorical characterizations
meant exactly.

All such similarities are worth analyzing and poten-
tially call for explanations. They may be the sign of an
identical nature between (some of) these activities, of
common essential features, or may just be shallow or
fortuitous. Clarifying this issue is also a way to analyze
these activities more acutely by singling out what is spe-
cific to each or common to them and to determine to
what extent epistemological insights can be transferred
between them.

34.5.1 Computational Mathematics
and the Experimental Stance

Experimental Proofs in Mathematics
Since aspects related to the representation of material
systems are absent from mathematics, a comparison
with this field can be hoped to be fruitful to an-
alyze what exactly is experimental in computational
science.

The mathematical legitimacy of computers for the
production of proofs has been discussed for several
decades. Computational proofs like that of the four-
color theorem by Appel et al. [34.172, 173] were rapidly
labeled quasi-empirical and discussions raged about
how they should be interpreted [34.174, p. 244]. Such
computational proofs can actually be seen as having
roots in the older tradition of quasi-empirical mathe-
matics, practiced for example by mathematicians like
Euler, and philosophically defended by authors like
Lakatos [34.175] or Putnam [34.176]. Interestingly,
even in these contexts, the labels empirical or exper-
imental were used to refer to various aspects of the
activity of proving results.

Like experiments, computational proofs involve ex-
ternal processes, which are fallible. Their reliability can
then be seen as being partly of a probable nature and
needs to be assessed a posteriori by running these exter-
nal processes several times and checking that the appara-
tus involvedworked correctly. By contrast, proofswhich
can be actively and directly produced by humans minds,
can provide a priori knowledge, the validity of which
is assessed by (mentally) inspecting the proof itself,
qua mathematical entity. Further, computational proofs,
like experiments and empirical methods in mathemat-
ics, usually provide particular numerical results: as the
computational physicist Keith Roberts writes it, “each
individual calculation is [. . . ] analogous to a single ex-
periment or observation and provides only numerical or
graphical results” (quoted in [34.70, p. 137]). Therefore,
to obtain more general statements (and possibly theo-
ries), probabilistic inductive steps are needed. Overall,
such debates illustrate the need to clarify the use in this
context of labels like experimental or empirical.

The Experimental Stance
The case of computational mathematics also makes
clear how scientists can adopt an experimental stance
for inquiries where no physical process is investigated,
and the nature of the object which is experimented upon
is completely known.

Experimenting involves being able to trigger
changes, or to intervene on material or symbolic dy-
namical processes, and to record how they vary ac-
cordingly. As noted by Dowling [34.136, p. 265] and
Jebeile [34.169, II, §7.2], processes for which the dy-
namics is known can also work as black boxes, since
the opacity of the process may stem either from our lack
of knowledge about its dynamics, or from the math-
ematical unpredictability (or epistemic inaccessibility)
of its known dynamics. In this perspective, contrarily
to Guala [34.177], being a black box is not a specific
feature of experiments.

Finally, when experimenting on a material or for-
mal object, it is better that interactions with the object
be made easy and the results be easily accessible to the
experimenters (e.g., by means of visual interfaces) so
that tinkering is made possible [34.136] and intuitions,
familiarity, and possibly some form of understand-
ing [34.159, 169, III] can be developed.

34.5.2 Common Basal Features

Some similarities of computer simulations and experi-
ments (and thought experiments) may be accounted for
by highlighting common basal features of these activ-
ities, which in turn account for the existence of their
common epistemological features, such as the shared
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concerns of practitioners of experiments and computer
simulations for “error tracking, locality, replicability,
and stability” [34.70, p. 142]. In this perspective, one
should characterize the nature and status of these com-
mon basal features.

Role or Functional Substitutability
Though computer simulations, thought experiments and
experiments are activities of different types, they can
sometimes be claimed to play identical roles. Typically,
computer simulations are used to gain knowledge about
how physical systems behave (hereafter behavioral
knowledge) when experiments are unreliable, or mak-
ing them is politically or ethically unacceptable [34.41,
p. 107]. Importantly, acknowledging that computer sim-
ulations can sometimes be used as substitutes for exper-
iments by no means implies that they can play all the
roles of experiments (Sect. 34.5.4). Further, one should
be aware that, at a high-level of abstraction, all activi-
ties may be described as doing similar things; therefore,
these shared roles should be shown in addition to have
nontrivial epistemological implications. For example,
one may argue that providing knowledge or producing
data are roles that are endorsed by computer simula-
tions, thought experiments, or experiments. However,
this may be seen as some partially sterile hand-waving.
Indeed this points at a too abstract similarity if these ac-
tivities produce items of knowledge of totally different
types, and nothing epistemologically valuable can be
inferred from this shared characterization (see [34.81]
for a presentation of the different types of knowledge
involved in science).

El Skaf and Imbert [34.87] make an additional step
when they claim that these activities can in certain cases
be functionally substitutable, that is, that we can some-
times use one instead of the other for the purpose of
a common inquiry – which remains compatible with
the fact that these activities do not play the roles in
question in the same way, that they come with dif-
ferent epistemic credentials, provide different benefits,
and therefore, as role holders, are not epistemologically
substitutable. El Skaf and Imbert, in particular, claim
that computer simulations, experiments, and thought
experiments are sometimes used for the purpose of
unfolding scenarios (see also Hughes’ notion of demon-
stration in Sect. 34.6.1) and argue that investigations
concerning the possibility of a physical Maxwellian
demon were indeed pursued by experimental, computa-
tional and thought experimental means. The existence
of such common roles then provides grounds for an-
alyzing similarities in the epistemological structure of
the corresponding inquiries.

Morrison [34.178] goes even further since she ar-
gues that some computer simulations are used as mea-

suring instruments and therefore that they have the
same epistemic status as experimental measurements.
She first claims that models can serve as measuring
instruments, and then shows that this role can be ful-
filled in connection with both computer simulations and
experiments, which are similarly model shaped. An im-
portant part of her strategy is to relax the conditions
for something to count as an experiment, by discretely
giving primacy, in the definitions of scientific activi-
ties, to the roles which are played (here measuring)
and by downplaying the importance of physical in-
teractions with the investigated target systems in the
definition of experiments (which are simply seen as
a way to perform this measuring role). Giere’s rejoin-
der denies the acceptability of this strategy, and follows
the empiricist tradition, when he claims that “a substi-
tute for a measurement is not a measurement, which
traditionally requires causal interaction with the target
system” [34.179, p. 60]. Indeed, the potential additional
pay-offs of experiments, as primary sources of radically
new evidence, come from these causal interactions. Ac-
cordingly, their specificity is not due to their roles,
qua information sources (since thought experiments,
models, or theories are also information sources), but
from the type of epistemological credentials that come
with the corresponding information, and grounds our
ultimate scientific beliefs. A different nonempiricist
epistemology might be developed, but the bait must
then be swallowed explicitly, and it must be explained
why such an epistemology, in which activities are ex-
clusively individuated on the basis of their function
and the importance of other differences is downplayed,
should be preferred. In any case, an account of how to
individuate these functions would be needed, since at
a high level of abstraction, various activities can be seen
as performing the same function.

Beyond Anthropocentric Empiricism
To practice science, humans need to collect observa-
tions and make inferences. Since human capacities are
limited, various instruments have been developed to ex-
tend them and these instruments have been partly com-
putational for decades. These parallel developments of
observational and inferential capacities come with com-
mon epistemological features. In both cases, restricted
empiricism, which gives a large and central role to
human sensorial or inferential capacities in the descrip-
tion of how scientific activities are carried out, is no
longer an appropriate paradigm to understand scientific
practices. Indeed, the place of human capacities within
modern science needs to be reconsidered [34.8, 41,
180]. Further, the externalization of observations and
inferences comes at the price of some epistemic opacity
and passivity for the practitioner, since, as humans, we
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no longer consciously carry out these activities. Instead
we simply state the results of experimental or computa-
tional apparatus. However, this also comes with gains in
objectivity since observational and informational proce-
dures are now carried out by external, transparent and
controlled apparatus, which no longer have hidden psy-
chological biases nor commit fallacies.

The development of computational instruments and
computer simulations also raises similar epistemolog-
ical problems. For example, the apparently innocuous
notion of data seems to raise new issues in the con-
text of computational science. Computer simulations,
like models, have been claimed to be useful to probe
physical systems and to be used as measuring instru-
ments [34.178]. Whatever the interpretation of such
statements (Sect. 34.5.3), it is a fact that both computer
simulations and computational instruments provide us
with data, which raises transversal questions.

A datum is simply the value of a variable. It can be
taken to describe a property of any object. In this sim-
ple sense, data coming from experiments and computer
simulations can play a similar role by standing for the
properties of some target system within some represen-
tational inquiries. Furthermore, in both cases, their in-
terpretation usually involves heavy computational treat-
ments. In particular, mathematical transforms of various
types serve to separate information from noise, remove
artifacts, or recover information about a system prop-
erty out of intertwined causal signals, like in computed
tomography imaging techniques [34.121]. From this
point of view, as emphasized by Humphreys [34.181],
here one departs from a principle frequently used by tra-
ditional empiricists, and according to which “the closer
we stay to the raw data, the more likely those data are
to be reliable sources of evidence.”

At the same time, there are different types of epis-
temological data, and the need for their common study
should not introduce confusion in their understanding.
In science, one seeks to determine how much data reli-
ably stand for their target, and which properties exactly
they refer to. Humphreys’s remark above the compu-
tational treatment of data, reproduced above, highlights
the fact that causal information concerning the source is
crucial to treat and interpret data and to determine what
empirical content they bring about this source (this is
the inverse inference problem), given that data do not
wear on their sleeves details of how they were pro-
duced. From this point of view, experimental and com-
putational data have utterly different causal histories –
so what gives its sense to the computational treatment
is potentially of a different nature [34.91, 121]. Overall,
more pointed comparative analyses of data obtained by
computer simulations and computational instruments
are still to be carried out, to understand their semantics

and epistemology and highlight both their nonacciden-
tal similarities and specific differences (see [34.182] for
the case of computational instruments).

Computational science must also face the challenge
of data management. While the steps of traditional
mathematical proofs and arguments, once produced,
can be verified by scientists, things are usually dif-
ferent for computer solutions, even if they are merely
executions of computational programs [34.91], or ar-
guments [34.72]. Details of computer simulations are
in general not stored since this would require too large
amounts of memory (even if, in some cases like theMil-
lennium Run, scientists may decide to keep track of the
evolution of the computer simulation). In other words,
like experimental science, computational science in-
volves choosing which data to keep track of, developing
powerful devices to store them, finding appropriate
ways to organize them, providing efficient interfaces
to visualize, search, and process them, and, more gen-
erally, developing new methods to produce knowledge
from them. This also raises questions about how these
data can or should be accessed by the scientific com-
munity, and which economic model is appropriate for
them [34.183]. In brief, the epistemology of computer
simulations here meets that of big data [34.184, 185],
even if it cannot be assumed that on-going debates
and analysis about the latter, because they are mostly
focused on questions raised by empirically collected
data, will naturally apply to, or be insightful for, the
corresponding problems raised by computer simula-
tions.

Different Activities, Similar Patterns
of Reasoning

As noted by Parker [34.186], strategies developed to
build confidence in experimental results, and described
in particular by Allan Franklin, seem to have close
analogs for the justification of results generated by
computer simulations. Indeed, the interpretation of the
results of computer simulations as evidence for hy-
potheses about physical systems can sometimes be
made through an error-statistical perspective [34.187]
as in the case of experiments [34.188].

Similar patterns of reasoning are also used to ar-
gue in favor of the existence of specific mechanisms or
entities on the basis of patterns within data, modes of
visualizations of these patterns, or our ability to manip-
ulate the actual or represented systems and find pattern
regularities in their behavior (see [34.71] for a descrip-
tion of the homomorphic tradition, in which visual
forms are given much importance, in contrast to the
homologic tradition, which is more based on logical re-
lationships). More generally, visualization techniques,
aimed to facilitate the reasoning about results present in
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large databases, are crucial in the case of both experi-
ments and computer simulations (Sect. 34.4.4).

Importantly, these similarities may have different
explanations. For example, they may simply stem from
the need to treat massive amount of data by efficient
standard procedures, or be a consequence of features
shared by experimental and computational data, inde-
pendently of their quantity, like the presence of noise,
or may correspond to the application of general types
of evidential or explanatory arguments to data having
different natures.

The Reproducibility of Results
Reproducibility is a typical requirement for experi-
ments, though it is one that is sometimes difficult to
achieve because of the tacit knowledge involved in the
carrying out of experiments [34.189]. Similar prob-
lems may arise with computer simulations. Even if the
latter are nothing more than computations and are in
principle reproducible, in practice reproducibility may
sometimes be difficult, especially in the context of big
science. For example, computer simulations may be too
big to be reproduced (all the more since scientists have
in general little incentive to reproduce results). Numer-
ical codes may not be public (because they are not
published or shared), and many of the computational
details may be left tacit. Finally, computer simulations
involving stochastic processes may not be exactly re-
producible because the random numbers came from
external physical signals or because the details of the
pseudorandom number generator are not made public.

Experimenters’ and Simulationists’ Regresses
Good scientific results are usually expected to be robust
against various changes [34.190], in particular those
related to implementation or material details, and this
is why failure of exact reproducibility should not be
a worry.

Still, when one faces an inability to reproduce a re-
sult, the problem may arise from a lack of robustness or
flaw in the original experiment or computer simulation,
or from a failure to reproduce it correctly. Accordingly,
as emphasized by Gelfert [34.191], computer simula-
tions are affected by a problem similar to that of the
experimenter’s regress [34.192], which is met when to
determine whether an experimental apparatus is work-
ing properly scientists have no criterion other than the
fact that it produces the expected results. As noted by
Godin and Gingras [34.193], regresses like that high-
lighted by Collins are instances of well-known types of
arguments already analyzed in the framework of ancient
skepticism (more specifically, regresses or circular rela-
tions regarding justification). As such, they are specific
neither to experiments nor to computer simulations –

even if solutions to these problems, as those described
by Godin and Gingras or Franklin [34.194], may be
partly activity specific. In any case, adopting a gen-
eral comparative perspective provides a way to analyze
more acutely what is epistemologically specific or com-
mon to scientific activities.

34.5.3 Are Computer Simulations
Experiments?

Some authors go as far as claiming that, at least in some
cases, what we call computer simulations are in fact ex-
periments. In this perspective, Monte Carlo methods,
sometimes labeled Monte Carlo experiments or Monte
Carlo simulations, seem to be a philosophical test case
(like analog simulations, Sect. 34.2.2). Such methods
are used to compute numbers (e.g., pi), sample target
distributions or produce dynamical trajectories with ad-
equate average properties. They rely crucially on the
use of randomness [34.8, 72]. They may look closer to
experiments because they sometimes use physical sys-
tems, like a Geiger counter, to generate random events.

Still, Beisbart and Norton claim that Monte Carlo
methods are not experiments, since randomizers can
be replaced by computer codes of pseudorandomiz-
ers [34.72, p. 412]. This shows that these computer
simulations do not require contact with the random-
izer as an external object; therefore no direct empirical
discovery about the nature of physical systems can be
made by them and they should not be seen as having
an experimental nature. In brief, in Monte Carlo simu-
lations, the physical systems involved are simply used
as computers to generate mathematically random se-
quences.

Beyond the analysis of specific cases, some au-
thors have defended the bolder claim that all computer
simulations are experiments (what Winsberg calls the
identity thesis [34.195, §5]). While this goes against
inherited scientific common sense (computations are
not experiments!), the claim should be carefully exam-
ined. Indeed, in principle there is no impossibility here:
while computations, logically defined, are not experi-
ments, we need physical machines to carry them out.
Therefore, in the end, computers, instruments and ex-
perimental systems are physical systems that we use for
the purpose of doing science – and it all boils down to
how we conceptualize in a coherent and fruitful way
these external worldly activities. In brief, perhaps, after
all, we would be better off revising our epistemolog-
ical notions so that computer simulations are seen as
genuine examples of experiments – a revisionary po-
sition with regard to the empiricist tradition since it
ignores the specificity of experiments as primary evi-
dential sources of knowledge.
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In what follows, I review existing arguments in
favor of the claim that computer simulations are exper-
iments, and how these arguments have been criticized.
Overall, as we shall see, in contrast to what is claimed
in [34.195, §5], it is very dubious that discussions about
the identity thesis are simply a matter of perspective and
where the emphasis is placed. A minute, conceptually
rigorous, and sharp treatment of this question can be
found in [34.53, 72, 91, 196] and [34.169, Chap. 7].

Problems with Analyses in Terms
of Common Physical Structures

Some authors analyze computer simulations as manip-
ulations of physical systems (the computers), which
instantiate or realize models that are also instantiated
or realized by the investigated physical systems.

Norton and Suppe [34.114] are good representatives
of this tradition. They first try to describe formal re-
lations between what they call a lumped model, the
structure of the target system, and the programmed
computer, which is supposed to embed the lumped
model. They further argue that these relations account
for the experiment-like character of computer sim-
ulations: instead of experimenting on real systems,
computer simulations are used as physical stand-ins
or analogs to probe real-world phenomena, and one
thereby learns thing about the represented systems. This
suggestive position has charmed various authors. It also
has similarities with accounts of scientific representa-
tion made in terms of similarity [34.28], isomorphism,
or weaker relationships between the representation and
the target system [34.197, 198], even if the authors that
defend the above view have not adopted so far this line
of argument.

However, in the case of computer simulations, this
view does not seem to resist close scrutiny, for rea-
sons specific to computational activities. While in the
case of analog simulations both the represented sys-
tem and the analog computer instantiate a common
mathematical structure (Sect. 34.2.2), such a claim can-
not be made for digital computers. The general idea
is that steps of computational processes are multiply
realizable and that, conversely, how physical states of
computers are to be interpreted is contextual and partly
arbitrary [34.4]. It is true that for every step of a com-
putation to be carried out in practice, one needs to use
a physical machine that can be seen as instantiating the
corresponding transition rule. However, physically dif-
ferent machines can be used to carry out different parts
of a computation (for example when the computation
is distributed). Furthermore, even if a single machine
is used, different runs of the program will correspond
to different physical processes, since the computer may
process several tasks in the same time and contextually

decide how its memories are organized, and even within
the same computation, a single part of the memory may
be used at different steps to code for different physi-
cal variables [34.91, pp. 564–566], [34.196, pp. 81–84].
Overall, in the general case, the relation between the
physical states of the represented target system and the
physical states of the computer(s) that may be used to
simulate its behavior is a many-many one, and the idea
that the phenomenon is recreated in the machine “is
fundamentally flawed for it contradicts basic principles
of computer architecture” [34.196, p. 84]: in the case
of a successful computer simulation, one can simply
say that every step of the computation has been carried
out by some appropriate physical mechanism, but there
is no such thing as a computer instantiating the struc-
ture of the model investigated. (Note that the argument
based on multiple realizability is in the spirit of those
originally developed by Fodor [34.126] in his discus-
sion of the reduction of the special sciences).

Problems with Common Analyses in Terms
of Intervention or Observation

Computer simulations have also been claimed to qualify
as experiments “in which the system intervened on is
a programmed digital computer” [34.199, p. 488], or
to involve observations of the computer as a material
system [34.114, p. 88]. Winsberg even goes as far as to
claim that [34.195]

“nothing but a debate about nomenclature [. . . ]
would prevent us from saying that the epistemic
target of a storm simulation is the computer, and
that the storm is merely the epistemic motivation for
studying the computer.”

Such claims can be answered along the same lines
as the previous argument. There is of course no denying
that when one runs a computer simulation one inter-
acts with the interface of the computer, which triggers
some physical change in the computer so that the right
computation is carried out. Similarly, once the compu-
tation is finished, the physical state of the memory in
which the result is stored, triggers a causal mechanism
that produces changes in the interface so that the re-
sult can be read by the user. However, the definition of
an intervention at the model level does not determine
a specific intervention at the physical level of the com-
puter. The reason is that, as emphasized above, even
within the same computational process, the way that
the intervened model variable is physically represented
in the computer may vary, and how the computer, qua
physical system, evolves precisely may depend on var-
ious parameters such as the other tasks that it carries
out at the same time. In brief, the idea that actual com-
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puter simulations, defined at the model level, could be
seen as the investigation of the computer, qua physical
machine, which is used to carry them out, seems to be
riddled with insuperable difficulties.

Finally, one should mention that epistemic access to
the physical states of the computer corresponding to the
successive steps of a computation is usually not possi-
ble in practice [34.196, p. 81].

Problems with General Analyses in Terms
of Epistemological and Representational
Structure

Some authors have also argued that computer simula-
tions and experiments share an epistemological struc-
ture, or epistemological aspects, and have used this
claim to justify the identity thesis.

For example, it has been claimed that in both cases
one interacts with a system to gain knowledge about
a target system, and the internal and external validity of
the processes needs to be checked. This type of analysis
stems from a 2002 paper byGuala [34.177] in which he
presents a laboratory experiment in economics aimed
at investigating behavioral decision making by giving
decisional tasks to real human subjects in the labo-
ratory. In this case, a hypothesis about how agents
behave in the laboratory is investigated (internal va-
lidity hypotheses); then, based on similarities between
the experimental situation and the real-life situation,
an external hypothesis is made about the behavior of
agents in real life situations (external validity hypothe-
sis). The notion of internal validity comes from social
science and corresponds to the (approximate) truth
of inferences about causal relationships regarding the
system that is experimented on. External validity corre-
sponds to the (approximate) truth of the generalization
of causal inferences from an initial system, for which
internal validity has been demonstrated, to a larger class
of systems. Guala further claims that both computer
simulations and experiments fit this epistemological
description in terms of internal and external validity ar-
guments, but cautiously concludes that their “difference
must lie elsewhere” [34.177]. According to him, com-
puter simulations and experiments are different, since in
the latter case there is a material similarity between the
object and the target, whereas, in the former case, there
is a formal similarity between the simulating and the
simulated systems (a claim which seems to be falling
under the above criticism directed at Norton and Suppe
and their followers).

Guala’s conceptual description is endorsed by most
authors who try to picture computer simulations as
some sort of experiment. For example, Winsberg ac-
cepts the description, but claims that the difference
between experiments and computer simulations lies

in the type of background knowledge that researchers
use to justify the external validity hypothesis [34.113,
p. 587], a position which is again revisionary with
regard to the empiricist tradition if this is the only speci-
ficity ascribed to experiments.

A serious worry is that describing the investigation
of the computational model in terms of internal valid-
ity is problematic and artificial, since, as can be seen
above, computer simulations cannot be considered as
investigations of the causal behavior of the computer,
qua physical system. For the same reason, the use of
the notion of external validity is inappropriate, since
for computer simulations inferences about the target
system do not involve the generalization of causal re-
lations taking place in the computer to other systems
by comparing their material properties but involve the
representational validity of the computational model.

A final problem is that the characterization of the
methodology of experimental studies in terms of inter-
nal and external validity, though useful in the social
sciences, is not a general one. Using it as an accepted
general framework to compare experiments and com-
puter simulations looks like a hasty extrapolation of
the case of laboratory experiments in experimental eco-
nomics, not to mention the fact that economics may be
seen as a bold pick to build a general conceptual frame-
work for experimental studies.

It is true that in experiments, the measured prop-
erties are often not the ones that we are primarily
interested in and the former are used as evidence about
these latter target properties. Typically, vorticity in tur-
bulent flows is difficult to measure directly, and is often
assessed by measuring velocity, based on imaging tech-
niques. In more complex cases, the properties measured
can be seen as a way to observe different and poten-
tially remote target systems, as is vividly analyzed by
Shapere with his case study of the observation of the
core of the sun by the counting of 37Ar atoms in a tank
within a mine on Earth [34.180]. Importantly, in all such
cases, the measuring apparatus, the directly measured
property, and the indirectly probed target system are
related by causal processes. The uses of the collected
empirical information then vary with the type of inquiry
pursued. The evidence may be informational about the
physics of a particular system, like the Sun. Or, it may
be used to confirm or falsify theories (like in the case
of the 1919 experiment by Eddington and the relativ-
ity theory). In some cases, though by no means all, it
may be used to draw inferences about the nature or be-
havior of a larger class of similar systems – which are
not related to the measured system by a causal rela-
tionships. If this latter case of reasoning about external
validity is taken as paradigmatic for experiments, and
the causal processes between the target experimented
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systems (the source) and the measuring apparatus (the
receptors), which are present in all experiments, are
considered as a secondary feature, experimental activi-
ties are misrepresented. As Peschard nicely puts it “the
idea that the experiments conducted in the laboratory
are aimed at understanding some system that is outside
the laboratory is a source of confusion” [34.200]. Gen-
eral conceptual frameworks that do not introduce such
confusion are however possible. For example, Peschard
proposes [34.200]

“to make a distinction between the target system,
that is manipulated in the experiment or represented
in the computer simulation, and the epistemic mo-
tivation, which in both cases may be different from
the target system ”

(see also the distinction between the result of the
unfolding of a scenario and the final result of the inquiry
in [34.87]).

Overall, the common description provided by
Guala, and heavily relied upon in [34.113, 199] to sup-
port versions of the identity thesis can be defended only
by squeezing experiments and computer simulations
into a straightjacket which misrepresents these activi-
ties, is not specifically fruitful, and meets insuperable
difficulties.

Materiality Matters
Clearly, for both experiments and computer simula-
tions, materiality is crucial. However, it does matter
differently, and one does not need to endorse a version
of the identity thesis to acknowledge the importance
of materiality when claiming for example that, to un-
derstand computational science, the emphasis should
be on computer simulations which can be in practice,
and therefore materially, carried out by actual sys-
tems [34.41, 91].

For experiments, material details are relevant
throughout the whole inquiry when producing, dis-
cussing and interpreting results, their validity and their
scope (especially if one tries to extrapolate from the in-
vestigated system to a larger class of materially similar
ones). By contrast, for computer simulations, material
details are important to establish the reliability of the
computation, but not beyond: only the mathematical
and physical details of the investigation matter when
discussing and interpreting the results of the computer
simulation and the reliability of the inquiry.

34.5.4 Knowledge Production,
Superiority Claims, and Empiricism

The question of the epistemic superiority of experi-
ments over simulations has also been discussed. Parke

[34.201] takes it for granted that “experiments are com-
monly thought to have epistemic privilege over simula-
tions” and claims that this is in fact a context-sensitive
issue. As we shall see, if one puts aside the question of
the specific role of experiments as the source of primary
evidence about nature, it is not clear whether the gen-
eral version of the superiority claim has actually been
defended, or whether a straw man is attacked.

Computer Simulations, Experiments and the
Production of Radically New Evidence

Let us try to specify what the general superiority claim
could be and how it has really been defended.

The obvious sense in which experiments may be su-
perior is that they can provide scientists with primary
evidence about physical systems, which originate in in-
teractions with these systems, and cannot be the product
of our present theoretical beliefs. It is unlikely that com-
puter simulation can endorse this role. As Simon pithily
puts it, “a simulation is no better than the assumptions
built into it, and a computer can do only what it is
programmed to do” [34.12, p. 14]. From this perspec-
tive, experiments have the potential to surprise us in
a unique way, in the sense that they can provide results
contradictory to our most entrenched theories, whereas
a computer simulation cannot be more fertile than the
scientific model used to build it (even if computer sim-
ulations can surprise us and bring about novel results,
see Sect. 34.3.4). This is what Morgan seems to have
in mind when she emphasizes that “[N]ew behaviour
patterns, ones that surprise and at first confound the
profession, are only possible if experimental subjects
are given the freedom to behave other than expected,”
whereas “however unexpected the model outcomes,
they can be traced back to, and re-explained in terms of,
the model” [34.202, pp. 324–5]. In brief, experiments
are superior in the sense that, in the empirical sciences,
they can serve a function which computer simulations
cannot.

Roush [34.203] has highlighted another aspect re-
garding which experiments can be superior to simula-
tions. She first insists that we should compare the two
methods other things being equal, especially in terms of
what is known about the target situation. Then, in any
case in which there are elements in the experimenter’s
study system that affect the results and are unknown,
we may still run the experiment and learn how the target
system behaves; by contrast, in the same epistemic situ-
ation, the simulationist cannot build a reliable computer
simulation that yields the same knowledge. However,
when all the physical elements that affect the result are
known, a simulation may be as good as an experiment,
and it is a practical issue to determine which one can in
practice be carried out in the most reliable way.
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Thus, for a quantitative comparison to be meaning-
ful it should be related to roles which can be shared
by experiments and computer simulations, such as the
production of behavioral knowledge about physical
systems, the relevant dynamics of which is known
(Sect. 34.5.2).

Grounds for Comparative Claims
Scientists and philosophers have emphasized over the
last decades that computer simulations are often mere
simulations [34.177], the results of which should be
taken carefully. As seen above, economists shun sim-
ulation; similarly, Peck states that evolutionary biolo-
gists view simulationswith suspicion and even contempt
[34.204, p. 530]. Nevertheless, however well advised
these judgmentsmay be, they cannot by themselves sup-
port a general and comparative claim of superiority in
favor of other methods, but at most the claim that, in
fields where other methods are successful and computer
simulations have little epistemicwarrants or face serious
problems, these other methods will usually or on aver-
age be more reliable (exceptions remaining possible).

Some authors have discussed the comparative claim
by analyzing the power of the types of inferences made
to justify knowledge claims in each case. In [34.199],
Parker adopts Guala’s description of experiments (resp.
computer simulations) as having material (resp. for-
mal) similarities with their target systems (see the
discussion in Sect. 34.5.3) and studies the claim that
inferences made on the basis of material similarities
would have an epistemic privilege. (Guala does not
seem to endorse a comparative claim. He argues that
material similarities are a specific feature of experi-
ments, implying that the prior knowledge needed to
develop simulations is different from that needed to
develop experiments.) Again, the common description
in terms of internal and external validity regarding
the inferences from one physical system to another
gives the semblance of a new problem. However, if,
as suggested above, the material properties of comput-
ers matter only in so far as they enable scientists to
make logically sound computations, and no similarity
between systems is involved, the grounds and rationale
for this discussion between the properties of the com-
puter and those of the target system collapse. A way to
save the argument is to claim that the aforementioned
formal similarities are simply those between the com-
putational model and the target system, but then the
question boils down to the much more familiar compar-
ison between model-based knowledge (here extracted
by computational means) and some type of experiment-
based knowledge.

On what grounds could the general privilege of
experiment-based behavioral knowledge then be de-

fended? Since experiments and computer simulations
are different activities, which are faced with specific
difficulties, it is hard to see why computer simulations
should always fare worse. Why could simulations based
on reliable models not sometimes provide more reli-
able information than hazardous experiments? Indeed,
it is commonly agreed that, when experiments cannot
be carried out, are unreliable, or ethically unacceptable,
computer simulations may be a preferable way to gain
information [34.41, p. 107].

Justified Contextual Superiority Claims
Interestingly, superiority claims can sometimes be
made in specific contexts. Morgan presents cases in
economics in which a precise and contextual version of
the superiority claim may be legitimate [34.202].

Like Guala, Morgan discusses laboratory experi-
ments in economics, that is, purified, controlled, and
constrained versions of real world systems, which are
studied in artificial laboratory environments (in con-
trast with field experiments, which “follow economic
behavior in the wild” [34.202, p. 325]) and are aimed
at investigating what is or would be the case in ac-
tual (nonsimplified) economic situations. Mathematical
models can also be used for such inquiries and, in each
case, scientists run the risk of describing artificial be-
haviors. Morgan then makes the following contextual
claim that “any comparison with the model experiment
is still very much to the real experiment’s advantage
here” [34.202, p. 321] (my emphasis) on the grounds
that, in this case, the problem of making ampliative
analog inferences from laboratory system to real-world
systems is nothing compared with the problem of the
realism of assumptions for models exploring artificial
models [34.202, pp. 321–322]. She does not justify
this point further, but a plausible interpretation is that,
in such cases, mathematical models necessarily ab-
stract away essential parts of the dynamics of decision
making, which arguably are preserved in experiments
because of the material similarity between the labora-
tory and real agents. In brief, while material similarity
plays a role in her argument she does not make the
general claim in the core of her paper that material sim-
ilarity will always provide more reliable grounds for
external validity claims than other methods (even if her
formulation is less cautious in her conclusion).

Overall, such sound contextual comparative judg-
ments require two premises: first that in some context
computer simulations are not reliable (or have relia-
bility r) and second that in the same context material
similarities provide reasonably reliable inferences (or
have reliability s> r). (Indeed, analogical reasoning
based on material similarities, in which one reasons
based on systems that are representative of or for larger
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classes of systems [34.127], can sometimes be pow-
erful ways to make sound – though not infallible! –
contextual inferences. As emphasized by Harré and
Morgan, “shared ontology [. . . ] has epistemological
implications” [34.202, p. 323], since “the apparatus is
a version of the naturally occurring phenomenon and
the material setup in which it occurs” [34.205, pp. 27–
8]. After all, different samples of the same substance
obey the same laws, even if contextual influences may
change how they behave and any extrapolation is not
possible.)

34.5.5 The Epistemological Challenge
of Hybrid Methods

Whether computer simulations and experiments are on-
tologically, conceptually, and epistemologically distinct
activities or not, it is a fact that jointly experimental and
computational mixed activities have been developed
by scientists. Their study was pioneered by Morgan,
who presents various types of hybrid cases in eco-
nomics [34.206] and biomechanics [34.127]. For exam-
ple, she reports different mixed studies aimed at inves-
tigating the strength of bones and carried out by cutting
slices of bone samples, photographing them, creating
digital 3-D images, and applying the laws of mechanics
to these experiment-based representations. Morgan fur-
ther attempts to provide a principled typology of these
activities. This proves difficult because “modern sci-
ence is busy multiplying the number of hybrids on our
epistemological map” and because the qualities of hy-

brids “run along several dimensions” [34.127, p. 233].
Overall, sciences illustrate “how difficult it is to cut
cleanly, in any practical way, between the philosopher’s
categories of theory, experiment and evidence” [34.127,
p. 232], and, we may add, computer simulations or
thought experiments.

Should these hybrid methods lead philosophers to
reconsider the conceptual frontiers between experi-
ments and computer simulations? We can first note that
their existence may be seen as a confirmation that the
traditional picture of science, in which theoretical, rep-
resentational or inferential methods on one hand and
experimental activities on the other play completely
different but complementary roles, is not satisfactory
(Sect. 34.5.2). Then, if one grants that activities like
experiments, thought experiments and computer sim-
ulations can sometimes play identical roles, it is no
surprise that they can also be jointly used to fulfill them.
Similarly, a group of four online players of queen of
spades sometimes involve virtual players – but most
people will be reluctant to see this as sufficient grounds
for claiming that bots are human creatures.

In any case, these hybrid activities raise episte-
mological questions. What, if anything, distinguishes
a computer simulation that makes heavy use of em-
pirical data from a measurement involving the com-
putational refinement of such data [34.53, 121]? How
much should the results of these methods be consid-
ered as empirical? Overall, what type of knowledge and
data is thereby generated (see [34.53] for incipient an-
swers)?

34.6 The Definition of Computational Models and Simulations

The main definitions of computer simulations are criti-
cally presented: Humphreys’s 1994 definition in terms
of computer-implemented methods, Hartmann’s 1996
definition in terms of imitation of one process by
another process, Hughes’s DDI (denotation, demonstra-
tion, interpretation) account of theoretical representa-
tion, and finally Humphreys’s 2004 definition, with its
emphasis on the notion of a computational template
(Sect. 34.6.1). The questions that a satisfactory defi-
nition should answer are then discussed, in particular
which notions should be primitive in the definition,
whether computer simulations should be defined as log-
ical or physical entities, whether they correspond to
success terms, how the definition should accommo-
date the possibility of scientific failure and the pursuit
of partly open inquiries, or to what extent computer
simulations are social, intentional, or natural entities
(Sect. 34.6.2).

I come back finally to the issue of the definition of
computer simulations. Providing a definition may look
at first sight to be easy, since what computers are is
well-known and clear cases of computer simulations
are well identified. However, a sound definition should
also be helpful to analyze less straightforward cases and
be fruitful regarding epistemological issues related to
computer simulations, not least by forcing philosophers
to clarify the various intuitions which are entertained
across scientific fields about these methods.

It is not difficult to present definitions that accom-
modate some types of computer simulations or some
particular (or field specific) uses of computer simula-
tions. Nevertheless, failing to distinguish between what
is typical of computer simulations in general and what
is specific to particular cases can lead (and has led) to
heedless generalizations (Sect. 34.5.3). Things are all
the more tricky as the very same types of computer



Part
G
|34.6

768 Part G Modelling and Computational Issues

simulations, qua formal tools (e.g., agent-based, CA
models, equation-based simulations, etc.,) can be used
in different epistemic contexts for different purposes,
and require totally different epistemological analyses.
The case of CA-based computer simulations exempli-
fies the risk of too quick essentialist characterizations.
While it was believed that these models were appropri-
ate for phenomenological simulations only [34.9, 135],
their use in fluid dynamics has shown that they could
supply theoretical models based on the same underly-
ing physics as traditional methods [34.100].

The following section is organized as follows. Ex-
isting definitions and the problems they raise are pre-
sented first, and then issues that a good definition of
computer simulations should clarify are emphasized.

34.6.1 Existing Definitions of Simulations

Computer-Implemented Methods
As emphasized by Humphreys, a crucial feature of sim-
ulations is that they enable scientists to go beyond what
is possible for humans to do with their native inferential
abilities and pen-and-paper methods. Accordingly, he
offered in 1991 the following working definition [34.7]:

“A computer simulation is any computer-imple-
mented method for exploring the properties of
mathematical models where analytic methods are
unavailable.”

This definition requires that we possess a clear defi-
nition of what counts as an analytic method, which is
not a straightforward issue [34.60]. Further, as noted
by Hartmann et al. [34.10, pp. 83–84], it is possi-
ble to simulate processes for which available models
are analytically solvable. Finally, as acknowledged by
Humphreys, the definition covers areas of computer-as-
sisted science that one may be reluctant to call computer
simulations. Indeed, this distinction does sometimes
matter in scientific practice. Typically, economists are
not reluctant to use computers to analyze models but
shun computer simulations [34.37]. Since both com-
putational methods and computer simulations involve
computational processes, their difference must be either
in the different types (or uses) of computations involved
either at the mathematical and/or the representational
level.

One Process Imitating Another Process
Hartmann proposes the following characterization,
which gives the primacy to the representation of the
temporal evolution of systems [34.10, p. 83]:

“A model is called dynamic, if it [. . . ] includes as-
sumptions about the time-evolution of the system.

[. . . ] Simulations are closely related to dynamic
models. More concretely, a simulation results when
the equations of the underlying dynamic model are
solved. This model is designed to imitate the time-
evolution of a real system. To put it another way,
a simulation imitates one process by another pro-
cess. In this definition, the term process refers solely
to some object or system whose state changes in
time. If the simulation is run on a computer, it is
called a computer simulation.”

This definition has been criticized along the follow-
ing lines. First, as noted by Hughes [34.13, p. 130],
the definition rules out computer simulations that do
not represent the time evolution of systems, whereas ar-
guably one can simulate how the properties of models
or systems vary in their phase space with other param-
eters, such as temperature. Accordingly, a justification
for the privilege granted to the representation of tempo-
ral trajectories should be found, or the definition should
be refined, for example, by saying that computer simu-
lations represent successive aspects or states of a well-
defined trajectory of a system along a physical variable
through its state space. Second, the idea that a specific
trajectory is meant to be representedmay also have to be
abandoned. For example, in Monte Carlo simulations,
we learn something about average values of quantities
along sets of target trajectories by generating a poten-
tial representative of these trajectories, but the computer
simulations are not aimed at representing any trajectory
in particular. One may also want a computer simula-
tion to be simply informative about structural aspects of
a system.Overall, the temporal dynamics of the simulat-
ing computer is a crucial aspect of computer simulations
since it “enables us to draw conclusions about the be-
havior of the model” [34.13, p. 130] by unfolding these
conclusions in the temporal dimension of our world,
but the temporal dynamics of the target system may not
have to be represented for something to count as a com-
puter simulation.

Third, the definition is probably too centered on
models and their solutions [34.207], since it equates
computer simulations with the solving of a dynamic
model that represents the target system. This is tan-
tamount to ignoring the fact that describing computer
simulations as mathematical solutions of dynamic mod-
els is not completely satisfactory. What is being solved
is a computational model (as in Humphreys’s defini-
tion [34.41], see below), which can be significantly
different from, and somewhat independent of, the ini-
tial dynamic model of the system, which usually de-
rives from existing theories. Effectively, different layers
of models, often justified empirically, can be needed
in-between [34.13, 97, 208]. For this reason, the repre-
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sentational relation between the initial dynamic model
and the target system, and between the computational
system and the target system, are epistemologically dis-
tinct.

Finally, the definition may be reproached for en-
tertaining a recurrent confusion about the role of ma-
teriality in computer simulations (Sect. 34.5.3), by
describing the representational relation as being be-
tween two physical processes, and not between the
computational model and succession of mathemati-
cal states which unfold it (in whatever way they are
physically implemented and computed) and the target
system.

Computer Simulations as Demonstrations
Hughes does not propose a specific definition of com-
puter simulations since he believes that computer sim-
ulations naturally fit in the DDI account of scien-
tific representation that he otherwise defends [34.13,
p. 132]. According to the DDI, which involves de-
notation, demonstration, and interpretation as compo-
nents [34.13, p. 125]:

“Elements of the subject of the model (a physi-
cal system evincing a particular kind of behavior,
like ferromagnetism) are denoted by elements of
the model; the internal dynamic of the model then
allows conclusions (answers to specific questions)
to be demonstrated within the model; these conclu-
sions can then be interpreted in terms of the subject
of the model.”

The demonstration can be carried out by a physical
model (in the case of analog simulations) or by a log-
ical or mathematical deduction, such as a traditional
mathematical proof, or a computer simulation. Further,
according to Hughes, in contrast to Hartmann’s ac-
count, “the DDI account allows for more than one layer
of representation” [34.209, p. 79]. Overall, a virtue of
this account is that it emphasizes the common episte-
mological structures of different activities by pointing
at a similar demonstrative step, which excavates the
epistemic content and resources of the model (see
also [34.210] for refinements, [34.87] for an analysis
which extends the idea of demonstration, or unfolding,
to thought experiments and some types of experiments,
and [34.72] for the related idea that computer simula-
tions are arguments). While as a definition of computer
simulation, Hughes’s sketchy proposal has somewhat
been neglected (see however [34.208]) it is a legiti-
mate contender and it remains to be seen how much
a more developed version of is would provide a fruitful
framework for philosophical discussions about com-
puter simulations.

Computer Simulations as the Concrete
Production of Solutions to Computational
Models

In order to answer problems with the previous defini-
tions, Humphreys proposed in 2004 another definition
of computer simulations, which is built along the fol-
lowing lines [34.41]. He defines the notion of a theoret-
ical template, which is implicitly defined as a general
relation between quantities characterizing a physical
system, like Newton’s second law, Schrödinger’s equa-
tion, or Maxwell’s equations. A theoretical template
can be made less general by specifying some of its
variables. When the result is computationally tractable,
we end up with a computational template. (Thus, what
qualifies as a computational template seems to depend
on our computational capacities at a given time.) When
a computational template is given (among other things)
an interpretation, construction assumptions, and an ini-
tial justification, it becomes a computational model.
Finally, Humphreys offers the following characteriza-
tion [34.41, pp. 110–111]:

“System S provides a core simulation of an object
or process B just in case S is a concrete computa-
tional device that produces, via a temporal process,
solutions to a computational model [. . . ] that cor-
rectly represents B, either dynamically or statically.
If in addition the computational model used by S
correctly represents the structure of the real system
R, then S provides a core simulation of system R
with respect to B.”

Another important distinction lies between the com-
puter simulation of the behavior of a system and that
of its dynamics [34.41, p. 111] since, even when the
computational model initially represents the structure
and dynamics of the system, the way its solutions are
computed may not follow the corresponding causal pro-
cesses. Indeed, in a computer simulation, the purpose
is not that the computational procedure exactly mim-
ics the causal processes, but that it efficiently yields
the target information from which an appropriate dy-
namic representation of the target causal processes can
finally be built for the user. For reasons of computa-
tional efficiency, the representation may be temporally
and spatially dismembered at the computational level
(e.g., by computing the successive states in a different
order), as may happen with the use of parallel process-
ing, or of any procedure aimed at partially short cutting
the actual physical dynamics.

The space here is insufficient to analyze all the as-
pects of the above definition and to do justice to their
justification – all the more so since further compli-
cations may be required to accommodate even more
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complex cases [34.208]. Suffice it to say that this elab-
orate definition, which is aimed at providing a synthetic
answer to the problems raised by previous definitions,
is one of the most regularly referred to in the literature.

34.6.2 Pending Issues

Simulating or Computing
Giving a definition of computer simulations implies
choosing which notions should be regarded as primi-
tive and how to order them logically. Some authors first
define the notion of simulation and present computer
simulations as a specific type of simulations. For exam-
ple, Bunge first defines the notion of analogy, then that
of simulation, and finally that of representation, as sub-
relation of simulation. For him, an object x simulates
another object y when (among other things) (1) there
is a suitable analogy between x and y and (2) the anal-
ogy is valuable to x, or to another party z that controls x
(see [34.11, p. 20] for more details).

A potential benefit of this strategy is that it be-
comes possible to unify in the same general framework
various different types of analogous relations between
systems such as organism versus society, organism ver-
sus automaton, scale ship versus its model, computer
simulations of both molecular and biological evolu-
tion, etc. Similarly, Winsberg [34.195, §1.3] suggests
that the hydraulic dynamic scale model of the San
Francisco Bay model should be viewed as a case of
simulation (see [34.211] for a recent presentation and
philosophical discussion of this example in the context
of modeling). While scale models can obey the same
dimensionless equations as their target systems and be
used to provide analog simulations of them, Winsberg’s
claim is not uncontroversial and may require an ex-
tension of the notion of simulation. Indeed the model
and the Bay itself do not exactly obey the same mathe-
matical equations. For example, distortions between the
vertical and horizontal scales in the model increase the
hydraulic efficiency, which implies adding copper strips
and the need for empirical calibration. Therefore, this
is not exactly a case of a bona fide analog simulation
(Sect. 34.2.2) but of a complex dynamical representa-
tion between closely analogous systems. In any case,
if one adopts such positions, it is then a small step to
describe other cases of analogical reasoning between
material systems (and possibly cases of experimental
economics, in which the dynamics of the analogous tar-
get system is not precisely known and external validity
is to be assessed by comparing the material systems in-
volved) as cases of simulations (Sect. 34.5.3).

At the same time, unification is welcome only if
it is really fruitful (and is, of course, not misleading).
As seen above, the problem with such analyses is that

they tend to describe computer simulations as involv-
ing a representational relationship between twomaterial
systems and to misconstrue how computers work (see
again Sect. 34.5.3). They thereby tend to misrepre-
sent the epistemological role of the physical properties
of computers and the fact that computational science
involves two distinct steps; one in which computer sci-
entists warrant that the computer is reliable and another
in which scientists use computations and do not need to
know anything about computers qua physical systems.
A way out of this deadlock may be to use a flexible
notion of simulation, which can be applied to relations
between physical or logical–mathematical simulating
processes and the target simulated physical processes.
Then, the question remains as to what exactly is gained
(and lost) from an epistemological point of view by
putting in the same category modes of reasoning of
such different types – if one puts aside the empha-
sis on the obvious similarities with analog simulations,
which are a very specific type of computer simulation
(Sect. 34.2.2). Overall, it is currently far from clear
whether this unificatory move should be philosophi-
cally praised.

Abstract Entities or Physical Processes
Arguably, computations are logical entities that can
be carried out by physical computers. Then, the ques-
tion arises should computer simulations also be seen
as abstract logical entities, or should they be seen as
material processes instantiating abstract computations?
Hartmann’s definitions present computer simulations
as processes, whereas Humphreys’s definition is more
careful in the sense that the computing systems simply
produce the solution or provide the computer simula-
tion. Clearly, to analyze computational science, it is
paramount to take into account material and practical
constraints since a computer simulation is not really
a part of our science and we have no access to its
content unless a material system carries it out a for
us. At the same time, just like the identity of a text is
not at the material level, the identity of a computing
simulation (and the corresponding equivalence relation-
ship between runs of the same computer simulation) is
defined at the logical (if not the mathematical) level
and the physical computer simply presents a token of
the computer simulation. From this point of view, the
material existence of computer simulations and the in
principle/in practice distinction emphasized byHumph-
reys [34.41] have epistemological, not ontological, sig-
nificance, that is, they pertain to what we may learn
by interacting with actual tokens of computer simula-
tions [34.91, p. 573] but not to the nature of computer
simulations. Similarly the identity of a proof seems to
be at the logical level, even if a proof has no existence
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nor use for us unless some mathematician provides
some token of it.

Success, Failure, and the Definition
of Computer Simulations

A computer simulation is something that reproduces the
behavior or dynamics of a target system. The problem
with characterizations of this type is that they make
computer simulation a success term and if a computer
simulation mis-reproduces the target behavior, it is no
longer a computer simulation. This problem is a gen-
eral one for representations, but is specifically acute for
scientific representations (Frigg and Nguyen Chap. 3,
this volume). Indeed, while anything in art can be
used to represent anything else, scientific representa-
tions are meant to be informative about the natural
systems they represent. This is part of their essential
specificities and, arguably, a definition according to
which any process could be described as a scientific
computer simulation of any other process is not satis-
factory. At the same time, one does not want something
to be a computer simulation, or a scientific represen-
tation, based on whether it is scientifically successful
and exactly mirrors its target (remember that, for some
scientific inquiries, representational faithfulness is not
a goal and may even impede the success of the investi-
gation [34.212] and [34.23, Chaps. 1 and 3].

An option is to say that something is a scientific rep-
resentation if it correctly depicts what its user wants
it to represent. However, this may raise a problem for
computer simulations that were carried out and had
subsequent nonintended uses, like the millennium sim-
ulation. It may also raise a problem for fictions, which
strictly speaking seem to represent nothing [34.25,
p. 770].

Finally, failed representations, which do not repre-
sent what their producers believe them to depict, are
also a problem. Representational inquiries can fail in
many ways, and failures are present on a daily ba-
sis in scientific activity, from theories and experiments
to models and simulations. For this reason, descrip-
tions of scientific activities should be compatible with
failure, especially if they are to account for scientific
progress and the development of more successful in-
quiries. Indeed, it would be weird to claim that many
of the computer simulations that scientists perform
and publish about are actually not computer simula-
tions. Further, whether a genuine computer simulation
is carried out should be in general transparent to the
practitioner, and this cannot be the case if computer
simulation is defined as a success term and scientific
failure is frequent (see also [34.213, pp. 57–58]).

Overall, a question is to determine where the fron-
tier should lie between unsuccessful or failed computer

simulations, and potential cases in which something
that was believed to be a computer simulation by scien-
tists actually is not. This in turn requires knowing how
computer simulations can fail specifically [34.92] and
which failures are specific to them. In brief, one needs
to be able to decide on a justified basis which failures
disqualify something from being a computer simulation
and which ones simply alter its scientific, epistemic, or
semantic value. This analysis may also have to be co-
herent with analyses about how other types of scientific
activities such as experiments and thought experiments
can fail [34.214], especially when these activities play
similar or identical roles.

An option to consider is that something is a com-
puter simulation based on criteria that do not involve
empirical success, and that it qualifies as an empiri-
cal success depending on additional semantic properties
and on whether it correctly represents the relevant as-
pects of its (real or fictional) target system(s). This
option is potentially encompassing enough (the scien-
tifically short-sighted student can be said to perform
a computer simulation), but discriminating between
good and bad computer simulations is still possible. It
is compatible with the fact that research inquiries are
often open and scientists need not know in advance
what in their results will have representational value
in the end. Finally, it is also compatible with a differ-
ent treatment of representational and implementation
failures. Indeed, the possibility of being unsuccess-
ful at the representational level is consubstantial to
empirical inquiries and is in this sense normal. By
contrast, an implementation failure is simply some-
thing that should be fixed. It corresponds to a case in
which we did not manage to carry out the intended
computation, whereas computing is not supposed to be
a scientific obstacle, and we learn nothing by fixing the
failure.

Natural, Intentional, or Social Entities?
A similar but distinct issue is to determine which type
of objects computer simulations are, qua token physical
processes carried out by computing devices – a question
which is close to that of the nature of physical comput-
ers and is also related to that of the ontology of model
(Gelfert Chap. 1, this volume).

Arguably, they are not simply natural objects which
are defined by some set of physical properties and exist
independently of the existence of the agents using them.
Indeed, because computations can be multirealized and
some runs of computations built by patching different
bits of computation on physically different machines,
it is unlikely that all computations can be described in
terms of natural kind predicates (massively disjunctive
descriptions not being allowed here) [34.126].
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Further, for both computations and computer simu-
lations, pragmatic conditions of use seem to matter. To
quote Guala commenting on the anthropomorphism of
Bunge’s definition (see above), [34.177, p. 61]

“it makes no sense to say that a natural geyser sim-
ulates a volcano, as no one controls the simulating
process and the process itself is not useful to anyone
in particular.”

Indeed, even if any physical system can be seen
as computing some (potentially trivial) functions (see
below), any physical object cannot be used as a (gen-
eral) computer, and we may have to endorse a posi-
tion along the lines of Searle’s notion of social ob-
jects [34.215], or of any analysis doing the same work:
a physical object X counts as Y in virtue of certain cog-
nitive acts or states out of which they acquire certain
sorts of functions (here computing), given that these
objects need to demonstrate appropriate physical prop-
erties so that they may serve these functions for us.
A specificity of computer simulations is that, unlike en-
trenched social objects, such as cars or wedding rings,
a small group of users may actually be enough for
a physical system to be seen as carrying out a computer
simulation. Thus, the evolution of a physical system
(like a fluid) may count for some users as an ana-
log computer, which performs a computer simulation,
and for other users as an experiment, even if experi-
ments and computer simulations are in general objects
of different types, and this case is unlikely to be met in
practice (Sect. 34.5.3).

In any case, what is needed for something to be
used as a computer or a computer simulation is not
completely clear. The physical process must clearly be
recognized as instantiating a computer model. Control
is useful but not necessarily mandatory (e.g., we may
use the geyser to simulate a similar physical system,
even if the geyser would not count as a controlled ver-
satile analog computer). The possibility to extract the
computed information is clearly useful – an issue that
matters for discussions about analog and quantum com-
puter simulations, and of course cryptography.

An alternative position is not to mention users in the
definition and to claim that, pace the peculiar case of
man-made computations (which may make use heav-
ily of the possibility offered by multiple realizability,
see Sect. 34.5.3), physical processes are the one-piece
physical instantiations of running computer models
(resp. computer simulations) and, as such, are computa-
tions (even if, sometimes, trivial ones). See [34.216] for
a sober assessment of this pancomputationialist posi-
tion. In this perspective, onemay say that it is a practical
problem to create artificial human-friendly computers
which can in addition be controlled and the informa-

tion of which can be extracted. While such positions
may be palatable for those, like Konrad Zuse, Edward
Fredkin and their followers [34.64, 217, 218], who want
to see nature as a computer, it is not clear that such pan-
computationalist theses, whatever their intrinsic merits
for discussing foundational issues like the computa-
tional power of nature or which types of computers are
physically possible, serve the purpose of understanding
science as it is actually practiced.

An important distinct question is whether inten-
tional or pragmatic analyses should also be endorsed
regarding computational models and computer sim-
ulations, qua representational mathematical entities,
that is, how much the intentions of users and con-
ditions detailing how their use by scientists is pos-
sible, should be part and parcel of their definitions.
Arguably, a scientific model is not simply a piece
of syntax or an entity which inherently and by it-
self represents, completely or partially, a target system
in virtue of the mathematical similarities it intrinsi-
cally possesses with this system. In order to understand
how scientific representations and computer simula-
tions work and actually play their scientific role, their
description may have to include captions, legends, ar-
gumentative contexts, intentions of users, etc., since
these elements are part of what makes them scientifi-
cally meaningful units. Indeed, how one and the same
mathematical model represents significantly varies de-
pending on the inquiry, subject matter and knowledge
of the modelers. This is particularly clear in the case
of computational templates, which are used across
fields of research for different representational and
epistemological purposes [34.41, §3.7], and which are
scientific units at the level of which different types
of theoretical and conceptual exchanges take place
within and across disciplines [34.45]. Overall, this is-
sue is not specific to computer simulations but can
be raised for other scientific representations [34.23,
168, 219–221]. Thus, this point shall not be developed
further.

Computer Simulations
and Computational Inquiries

How should computer simulations be delineated? Com-
puter simulations do not wear on their sleeves how they
were built, contribute to scientific inquiries, should be
interpreted and how their results should be analyzed.
Accordingly, authors like Frigg and Reiss distinguish
between computer simulations in the narrow sense (cor-
responding to the use of the computer), and in the
broad sense (corresponding to the “entire process of
constructing, using and justifying a model that in-
volves analytically intractable mathematics” [34.30, p.
596]). See also the distinction between the unfolding
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of a scenario and the computational inquiry involv-
ing this unfolding at its core [34.87], or the descrip-
tion of how the demonstration activity is encapsulated
in other activities in the DDI account of representa-
tion [34.13].

Whatever the choice which is made, there is tension
here. As underlined above, an analysis of the identity of
scientific representations cannot rest on the logical and
mathematical properties of scientific models and their
similarities with their physical targets, and indications
about how these representations are to be interpreted
cannot be discarded as irrelevant to the analysis of their
nature and uses. At the same time, computer simu-
lation, qua computational process, and the arguments
that are developed by humans about it, are activities
of different natures and play different roles. Therefore
an encompassing definition should not lead to blur the
specificities of the different components of computa-
tional inquiries (just like a good account of thought
experiments should not blur that they crucially involve
mental activities at their core and are part of inquiries
also involving scientific arguments).

34.6.3 When Epistemology Cross-Cuts
Ontology

Whatever the exact definition of computer simulations,
it is clear that they are of a computational nature, in-
volve representations of their target systems and that
their dynamics is aimed at investigating the content of
these representations.

Importantly, whereas the investigation of scien-
tific representations is traditionally associated with the
production of theoretical knowledge, the nature of com-

puter simulations does not seem to determine the type
of knowledge they produce.

Clearly, computer simulations can yield theoretical
knowledge when they are used to investigate theoretical
models. At the same time, even if computer simula-
tions are not experiments (Sect. 34.5.3), they produce
knowledge, which may qualify as empirical in different
and important senses. As we have seen, computer sim-
ulations provide information about natural systems, the
validity of which may be justified by empirical creden-
tials rooted in interactions with physical systems for as-
pects as various as the origin of their inputs, the flesh of
their representations of systems (see in Sect. 34.5.5 the
examples by Morgan about the studies of the strength
of bones), the calibration or choice of their parameters,
or their global validation by comparison with experi-
ments (Sect. 34.3.2). However, information about the
dynamics represented cannot completely be of empir-
ical origin, since it involves the description of general
relations between physical states, and general relations
cannot be observed.

From this point of view, computer simulations may
be seen as a mathematical mode of demonstrating the
content of scientific representations that is in a sense
neutral regarding the type of content that is processed:
empirically (resp. theoretically) justified representa-
tions in, empirically (resp. theoretically) justified in-
formation (or knowledge) out. This suggests that when
analyzing and classifying types of scientific data and
knowledge, the ways that they are produced and pro-
cessed (experimentally or computationally) and where
their reliability comes from (e.g., theoretical credentials
or experimental warrants) are, at least in part, indepen-
dent questions.

34.7 Conclusion: Human-Centered,
but no Longer Human-Tailored Science

Computer simulations and computational science keep
developing and partly change scientific practices
(Sect. 34.7.1). Human capacities no longer play the
role they had in traditional science, hence the need to
analyze the articulation of computational and mental
activities within computational science (Sect. 34.7.2).
This requires in particular studying computational sci-
ence for its own sake, which however should not be
seen as implying that computer simulations always cor-
respond to scientific activities of radically new types
(Sect. 34.7.3). In any case, whatever the exact relations
between computer simulations and traditional activities
like theorizing, experimenting or modeling, it is a fact
that recent investigations about computer simulations

have shed light on epistemological issues which were
de facto not treated in the framework of previous philo-
sophical studies of science (Sect. 34.7.4).

Before the development of computers, humans were
involved at every step of scientific inquiries. Various
types of devices, tools, or instruments were invented to
assist human senses and inferential abilities, and they
were tailored to fit human capacities and organs. In
brief, science was for the most anthropocentric science,
that is to paraphrase Humphreys [34.41, §1.1] “science
by the people for the people,” and analysts of science,
from Locke, Descartes, Kant to Kuhn, or Quine offered
a human-centered epistemology [34.123, 124, p. 616].
Similarly, theories and models needed to be couched
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in formalisms which made their symbolic manipulation
possible for humans (hence the success of differential
calculus), problems were selected in such a way that
they could be solved by humans, results were retrieved
in ways such that humans could survey or browse them,
etc.

34.7.1 The Partial Mutation
of Scientific Practices

The use of computers within representational inquiries
has modified, and keeps modifying, scientific prac-
tices. Theorizing is easier and therefore less academ-
ically risky, even in the absence of well-entrenched
backing-up theories; solutions to new problems be-
come tractable and how scientific problems are selected
evolves; the models which are investigated no longer
need to be easily manipulated by human minds (e.g.,
CA are well adapted for computations, but ill-suited to
carry out mental inferences [34.43]; the exploration of
models is primarily done by computers, making men-
tal explorations and traditional activities like thought
experiments are somewhat more dispensable [34.117]
and [34.41, pp. 115–116]; the treatment of computa-
tional results, as well as their verification, is made by
computational procedures; the storage of data, but also
their exploration by expected or additional inquirers,
are also computer based. Finally, the human, mate-
rial, and social structure of science is also modified
by computers, with a different organization of scien-
tific labor, the emergence in the empirical sciences of
computer-oriented scientists, like numerical physicists
and computational biologists or chemists, or the devel-
opment of big computational pieces of equipment and
centers, the access to which is scientifically controlled
by the scientific community (like for big experimental
pieces of equipment).

34.7.2 The New Place of Humans
in Science

Overall, the place and role of humans in science has
been modified by computational science. Arguably, hu-
man minds are still at the center of (computational)
science, like spiders in their webs or pilots in their
spacecrafts, since science is still led, controlled, and
used by people. Thus, we are in a hybrid scenario
in which we face what Humphreys calls the anthro-
pocentric predicament of how, we, as humans, can
“understand and evaluate computationally based scien-
tific methods that transcend our own abilities” [34.42,
p. 134]. In other words, interfaces and interplays be-
tween humans and computers are the core loci from

which computational science is controlled and its re-
sults skimmed by its human beneficiaries. More con-
cretely, scientific problems still need to be selected;
computational models, even if designed for computers,
need to be scientifically chosen (e.g., CA-based mod-
els of fluids were first demonstrated to yield the right
Navier–Stokes-like behavior by means of traditional an-
alytic methods [34.43]; results of computer simulations,
even if produced and processed by computers, need to
be analyzed relative to the goals of our inquiries; and ul-
timately scientific human-sized understanding needs to
be developed for new fundamental or applied scientific
orientations to be taken.

34.7.3 Analyzing Computational Practices
for Their Own Sake

Over the last three decades, philosophers of science
have emphasized that in most cases computer simu-
lations cannot simply be viewed as extensions of our
theoretical activities. However, as discussed above, the
assimilation of computer simulations with experimental
studies is still not satisfactory. A temptation has been to
describe the situation as one in which computer stud-
ies lay in-between theories and experiments. While this
description captures the inadequacy of traditional char-
acterizations based on a sharp and exclusive dichotomy
between scientific activities, it is at best a metaphor.
Further, this one-dimensional picture does little jus-
tice to, let alone help one understand, the intricate and
multidimensional web of complex and context-sensitive
relations between these activities.

An alternative is to analyze computational models,
computer simulations, and computational science for
their own sake. Indeed, computer simulations clearly
provide a variety of new types of scientific practices,
the analysis of which is a problem in its own right. Im-
portantly, this by no means implies that these practices
require a radically new or autonomous epistemology
or methodology. Similarly mathematical and scientific
problems can be genuinely independent, even when in
the end they can be reduced by complex procedures
to a set of known or solved problems. Indeed, the
epistemology of computer simulations often overlaps
piecewise with that of existing activities like theorizing,
experimenting, or thought experimenting. Disentan-
gling these threads, clarifying similarities, highlighting
specific features of computational methods, and analyz-
ing how the results of computer simulations are justified
in actual cases is an independent task for naturalistic
philosophers, even if one believes that, in principle,
computer simulations boil down to specific mixes of al-
ready existing, more basic activities.
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34.7.4 The Epistemological Treatment
of New Issues

In practice, the analysis of computer simulations has
raised philosophical issues, which were not treated by
philosophers before computational studies were taken
as an independent object of inquiry, either because they
were ignored or unnoticed in the framework of previ-
ous descriptions of science, or because they are gen-
uinely novel [34.96, 124, 207]. This a posteriori justifies
making the epistemological analysis of computational
models and computer simulations a specific field of
the philosophy of science. How much computer sim-
ulations will keep modifying scientific practices and
howmuch their philosophical analysis will finally bring
about further changes in the treatment of important
issues like realism, empiricism, confirmation, explana-
tion, or emergence, to quote just a few, remains an open
question.
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